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Abstract

A decision maker repeatedly asks an adviser for advice. The adviser is either

competent or incompetent and his preferences are not perfectly aligned with the

decision maker’s preferences. Over time, the decision maker learns about the

adviser’s type and fires him if he is likely to be incompetent. If the adviser’s

reputation for being competent improves, it will be more attractive for him to

push his own agenda because he is less likely to be fired for incompetence. Conse-

quently, very competent advisers are also fired with positive probability because

they pursue their own goals. The quality of advice is highest if the adviser’s

competence is uncertain.
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1. Introduction

As specialization is one of the cornerstones of the modern knowledge society, it is

unsurprising that advice given by specialized experts is important in so many domains

of life. Savers have financial advisers to help them manage their wealth, consumers rely

on sales personnel, politicians and managers depend on their advisers to find the right

policy, patients need their physicians’ advice and internet users rely on search engines.

In most of these cases the adviser’s incentives are not necessarily aligned with the

advice seeker’s preferences. Financial advisers (as well as sales personnel and search

engine operators) can obtain bonuses if their customers buy specific products, while
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politicians and managers might wonder whether their advisers have an own agenda and

patients might be worried that their physician’s enthusiasm for a certain drug stems

from successful lobbying efforts on the part of its producer. Even ex post, it is hard

to detect whether these worries were justified because the advice in all these areas is

complex and even the best possible advice could turn out to be wrong once in a while.

Another common feature of these examples is the repeated nature of the advice.

Most people tend to receive advice from the same adviser several times and switch ad-

visers only from time to time. It clearly makes sense to switch if one concludes that the

adviser is not competent i.e. the adviser is more of a quack than an expert. However,

long term advisers otherwise viewed as very competent are also occasionally fired. For

instance, in 2003, financial analyst Jack Grubman was banned by the Security and Ex-

change Commission from the financial industry for life and fined fifteen million dollars

for misconduct. Grubman had used his good reputation to pursue his personal goals

when he gave a public buy recommendation for AT&T as part of a complicated plan

for his children to be admitted to the prestigious 92nd Street YM-YWHA’s preschool

program (as he explained in a private email that later went public).1 By the time the

ban was announced, market participants had, of course, already stopped listening to

Grubman’s advice. This reaction was, however, not a response to perceived incompe-

tence. When Grubman was hired by Distinctive Devices as consultant a year later, the

company’s stock price increased. The problem was that Grubman apparently (ab-)used

his good reputation by misrepresenting his information and thereby manipulated his

followers for his own personal benefit.

To take an example of political advice giving, consider the firing of Roger Stone

as Donald Trump’s campaign adviser in his race to become the Republican Party’s

candidate in the 2016 presidential election. Trump and Stone had worked together for

more than a decade and Stone was well regarded within the Republican party. Trump

explained his dismissal by saying: “I terminated Roger Stone last night because he no

longer serves a useful function for my campaign.” Trump added: “I really don’t want

publicity seekers who want to be on magazines or who are out for themselves. This

campaign is not about them.” In other words, the firing was not due to incompetence

but the fact that, from Trump’s point of view, Stone prioritized his personal agenda

over the one his boss had in mind.

History is full of further examples in which kings have dismissed or even killed

their most prominent advisers when these advisers were too competent and perceived

as a threat to the throne. Famous in this sense is the Ottoman Sultan Suleiman the

Magnificent, who killed not only his Grand Vizier and childhood friend Pargali Ibrahim

1See http://observer.com/2010/03/stockgoosing-grubman-to-sell-townhouse-for-196-m/

for a brief summary of the story. (accessed on August 1, 2017)
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Pasha (after Ibrahim committed the mistake of using the title “Serasker Sultan”) but

also his own son and designated heir Mustafa for this reason (after a successful military

campaign on his father’s behalf where Mustafa committed the mistake of not stopping

his soldiers referring to him as “sultan”).

In all these examples, a very competent adviser was mistrusted and fired after com-

mitting some “mistake” that made the decision maker doubt whether the adviser acted

in the decision maker’s best interest or whether he was instead (ab-)using his power

to push his own agenda. This paper argues that these situations are typical. More

specifically, advisers are fired not although they had a reputation for being competent

but because they had a reputation for competence. That is, they might have kept their

positions – and possibly even avoided the mistake – if their competence had been in

doubt.

What is the logic behind this result? I consider a setting in which the competence of

the adviser is not perfectly known by the decision maker. An adviser whose competence

is in doubt is facing the danger of being dismissed for incompetence if his advice turns

out to be bad (which will strengthen the decision maker’s initial doubts). Consequently,

the adviser has strong incentives to act in the decision maker’s best interest to keep

his position. An adviser who is believed – with high probability – to be competent,

however, has more freedom because the risk of him being fired due to incompetence in

the near future is negligible. That is, even if his advice turns out to be bad a few times,

this is not immediately a sign of incompetence as it could simply be due to bad luck.

The adviser is therefore free to pursue his own goals, which are usually not in line with

the decision maker’s goals. Hence, in this case, the best response of the decision maker

is to fire the adviser because his advice serves only the interests of the adviser himself

and not the decision maker’s interests.2

Figure 1 shows the reasons for firing an adviser who is, in fact, competent for

different beliefs of competence. The decision maker fires the adviser if the belief that he

is competent is too low because the information that the adviser is competent is hidden.

If the belief is high, then the reason for firing the adviser is not hidden information but

moral hazard: the adviser does not act in the interest of the decision maker but pushes

his own agenda. Note that the decision maker gets the best advice when he is uncertain

about the quality of the adviser because this uncertainty will incentivize the adviser to

give good advice.

The model is a repeated game in which the adviser recommends one of two options to

2To be more precise, the decision maker and adviser might in equilibrium use mixed strategies
when the adviser is believed to be competent. Thus, the decision maker will fire the adviser with some
probability when a recommendation turns out to be bad. This gives the adviser some incentive to give
not too bad advice to avoid being fired. In equilibrium, the quality of advice will be just high enough
to make the decision maker indifferent between firing and keeping the adviser. Otherwise, the decision
maker’s threat of firing would not be credible.
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Figure 1: Reasons for firing a competent adviser (α is the belief that the adviser is
competent). The adviser is not fired for intermediate values of α.

the decision maker in every period until the decision maker ends the advice relationship.

One of the available options fits the decision maker’s needs and one fits the adviser’s

needs – e.g. he receives a bonus for this option. The two might accidentally coincide

from time to time but often they do not. The decision maker has a uniform prior

concerning which option will fit his needs and also concerning which will fit the adviser’s

needs. The adviser receives a noisy signal of which option fits the decision maker’s needs

and knows perfectly which option will give him a bonus. The decision maker finds out

whether the recommended option has fitted his needs only after he has followed the

recommendation. The adviser has one of two types: either he is competent – i.e. his

noisy signal is informative – or not.

In this model, no meaningful advice could be obtained in a static setting because

the adviser would always recommend his bonus option if he did not face the threat of

losing future bonus payments. The same is true in a finitely repeated game: similar

to the static setting, the adviser is unable to give meaningful advice in the last period

and as a consequence, he will always be fired before the last period. Given this, the

adviser is unable to give meaningful advice in the second to last period and the game

unravels, meaning that the adviser is never consulted in equilibrium. Some informative

advice is, however, possible in an infinitely repeated game setting. Unsurprisingly, the

adviser is fired for sure if the decision maker’s belief that the adviser is competent is

very low. If this belief is sufficiently high, then the adviser is also fired with positive

probability whenever he recommends an option that does not fit the decision maker’s

needs. For these high beliefs, equilibrium strategies are usually mixed. The decision

maker is indifferent between firing and keeping the adviser and the threat of firing is

just high enough to ensure that the adviser finds a strategy optimal that keeps the

decision maker indifferent between these two options.

The expected length of the game, i.e. the number of periods before the adviser is

fired, is uniformly bounded from above for any belief; that is, the bound is independent

of the decision maker’s belief about the adviser’s competence. This illustrates that even

an arbitrarily competent adviser will almost surely be fired within a finite amount of

time. These results hold for all equilibria of the game, i.e. they are not affected by

multiplicity of equilibria. It is also shown that the adviser suffers in many equilibria

from a severe commitment problem: if he was able to commit to truthfully revealing
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his signal in every period, then he and the decision maker would both obtain a strictly

higher payoff than in equilibrium.

Related to this paper is the literature on cheap talk started by Crawford and Sobel

(1982) and surveyed in Krishna and Morgan (2008).3 The exact structure of the payoffs

is, however, somewhat different from the traditional cheap talk setup where the adviser

has a bias in a certain direction, e.g. a political adviser is more left-wing than the

decision maker and will therefore always push for more leftist policies than the decision

maker would like. In my setup, the bias does not run in a certain direction but is

for one (random) option which carries a bonus for the adviser. Within the cheap talk

literature, models of repeated cheap talk in which the state of the world changes each

period are closest to my paper.4 Renault et al. (2013) characterize the set of equilibrium

payoffs in a repeated game framework when players are arbitrarily patient and states

are correlated through an irreducible Markov chain. Park (2005) analyzes a situation

where a consumer has a problem each period and relies upon advice to find out which

of the several repair shops specializes in fixing the problem at hand. In contrast to

the current paper, the adviser in these papers knows the state of the world perfectly;

consequently, reputation for competence does not play a role. Hence, an expert cannot

be “too good” which is the main focus of my paper. This is also the main difference to

earlier papers (Sobel, 1985; Benabou and Laroque, 1992) where the adviser’s type refers

to his honesty and not the quality of his information. Being more certain of facing a

honest type is good for consumers, implying that they will certainly not fire the adviser

at these favorable beliefs. In my model, being more likely to face an informed type can

be bad because it aggravates the moral hazard problem.

An effect closely related to this paper is known from the literature on reputation

with repeated interaction between a sequence of short lived principals and a long lived

agent where both moral hazard and adverse selection are present, see Mailath and

Samuelson (2001), Jullien and Park (2014). In these papers, incentivizing agents with a

good reputation to exert high effort becomes so difficult that equilibria with high effort

at some reputation level do not exist (if monitoring is noisy).5 The reason is – similar to

my paper – that the belief updating is slow when the belief of facing a competent type

3The adviser’s advice is in my setup directly relevant for the decision maker’s payoff but the main
reason is that – due to his ignorance – the decision maker has no real choice but to follow the adviser’s
advice (as long as he did not quit the advice relationship). That is, the model of this paper is equivalent
to a model where the advice is real cheap talk and the decision maker has a pseudo decision to follow
the advice or not.

4There is also a literature analyzing the effect of repeated advice when the state is the same in
all periods and only one action has to be taken, e.g. Aumann and Hart (2003), or an action is taken
repeatedly, e.g. Golosov et al. (2014).

5One exception is proposition 2 in Mailath and Samuelson (2001) where a mixed equilibrium is
constructed in which high effort is exerted for some reputation levels. However, the set of these
reputation levels is countable and strategies necessarily have an infinite number of discontinuities in
any such equilibrium; see section 5 for a more detailed discussion.

5



is close to 1. However, a high effort equilibrium may exist if types are impermanent;

that is, in each period the type of the agent changes – unobserved by the principal

– with a small probability. A similar logic also appears in Cripps et al. (2004) and

Wiseman (2008). My paper differs in several ways: when looking at Markov equilibria,

the decision maker’s strategy is allowed to depend not only on “reputation” – that is

the belief that he is competent – but also on whether advice in the current period was

successful (while it depends only on reputation in the aforementioned papers). This

allows for partially informative equilibria that still display the difficulty of incentivizing

advisers with high reputation: advisers with a good reputation give worse advice and are

fired with some probability. In contrast, Mailath and Samuelson (2001) and Jullien and

Park (2014) focus on “honest Markov equilibria” in which good agents exert high effort

regardless of their reputation and a higher reputation is therefore always good news for

the principal. Furthermore, types are permanent in my model and both adviser and

decision maker are long lived and strategic (which would lead to a complete breakdown

of communication in the papers mentioned above). Having a long lived decision maker

allows a focus on stopping/firing which is less relevant in the aforementioned papers with

short lived principals. In addition, several of my results apply to all perfect Bayesian

equilibria and not only Markov equilibria.

More broadly, the paper is part of the literature asking whether career concerns and

reputation can prevent opportunism, see Fama (1980) and Holmström (1982) for sem-

inal contributions. Closest is Aghion and Jackson (2016) in which (political) “leaders”

have to be incentivized to take risky decisions (instead of remaining inactive) by the

threat to vote them out of office. In equilibrium, even arbitrarily competent leaders are

terminated with some probability whenever they do not take a risky decision. However,

setup and applications differ significantly as “leaders” do not receive bonuses and do

not know their own type.

Another strand of the literature, e.g. Brandenburger and Polak (1996); Ottaviani

and Sørensen (2006a,b), analyzes how an expert who wants to maximize his reputation

for being competent will misrepresent his information. The main result is that the

adviser will then misrepresent his signal towards the prior. This interplay between prior

beliefs and reputation concerns in a repeated game setup is also present in many other

papers, e.g. Prendergast and Stole (1996), Morris (2001), Ely and Välimäki (2003),

Li (2007) and Klein and Mylovanov (2016). This effect is not present in the current

paper as the decision maker will have a uniform prior which makes it impossible to

misrepresent towards the prior. Furthermore, the expert wants to maximize his expected

bonus stream – and not his reputation per se – which leads to the aforementioned moral

hazard problem that drives the results of my paper.

The outline of the paper is as follows. The next section introduces the model and
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describes the solution concepts used. Section 3 presents the results – most prominently

that competent advisers are fired with positive probability and that the game is expected

to end within a given finite time. It also gives necessary and sufficient conditions for

the existence of Markov equilibria with informative communication and points out a

commitment problem on the side of the adviser. The model is extended to allow for

monetary transfers and some competition among several advisers in section 4. Section 5

discusses the results and their implications and section 6 concludes. Proofs are relegated

to the appendix.

2. Model

Actions and payoffs: As long as the decision maker (DM) does not fire the adviser

(A), the stage game in period t is as follows: A receives a noisy signal about DM’s needs

in this period and recommends one of two available options to DM. Only one of the two

options fits DM’s needs and DM receives a payoff of 1 (0) if the recommended option

fits (does not fit) his needs.6 DM’s payoff is observed by both players, i.e. both players

observe whether the recommendation fitted DM’s needs or not. One of the two options

leads to a “bonus” for A. That is, A receives a payoff of 1 (0) if he recommends (does

not recommend) the bonus option. The identity of the bonus option and A’s payoff are

privately observed by A. At the end of the period, DM decides whether to continue to

the next period or to stop the game, i.e. fire the adviser, which gives him an outside

option payoff of WO in t + 1 and zero payoff thereafter. A’s payoff is zero in all future

periods if DM stops the game. Both players discount future payoffs using the common

discount factor δ ∈ (0, 1). The timing of the stage game is summarized in figure 2.

A gets
signal

A recommends
option

DM follows
recommen-
dation

A+DM
observe

fit

DM
updates
belief

DM
continues
or stopsActions:

Payoffs:

Info:

DM:
0 or 1

A:
0 or 1

Figure 2: Timeline within a given period t.

Information: Each option fits DM’s needs with probability 1/2 and is A’s bonus op-

tion with probability 1/2. These events are independent. This implies that DM cannot

infer from the identity of the recommended option the likelihood that A recommends

the bonus option.7 DM’s needs and A’s bonus options are uncorrelated across periods.

6The recommendation is directly payoff relevant. However, the model is equivalent to one where
DM has a pseudo decision of choosing an option and this decision is payoff relevant.

7One interpretation is that DM only knows that there are 2 options but is unaware of what these
options are; that is, he learns that a specific option exists only if it is recommended to him (this is
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(These assumptions are made for ease of exposition and can be relaxed, see section 3.1.)

A has one of two types. If A is incompetent, his signal about DM’s needs is com-

pletely uninformative. An incompetent type’s belief assigns therefore probability 1/2

to each option fitting DM’s needs. If A is competent, his signal is noisy but informative.

More precisely, a competent type’s belief concerning DM’s needs assigns probability

p ∈ (1/2, 1) to one option and 1− p to the other option. I will refer to the more likely

option as “option h” (high probability fit) and the less likely option as “option l” in

the remainder (but keep in mind that DM is not aware of these identities as A’s signal

is private!). For simplicity, p is assumed to be time invariant. A’s type is A’s private

information while also being time invariant.

DM’s belief as to whether A is competent is denoted by α ∈ [0, 1]. This belief

is updated using Bayes’ rule after observing whether the recommendation has fitted

DM’s needs or not. DM’s initial belief α0 is assumed to be common knowledge. Conse-

quently, α will be commonly known in equilibrium as both players observe whether the

recommendation has fitted DM’s needs. I will occasionally refer to α as A’s reputation.

Parameter assumption: To make the problem interesting, DM’s outside option is

assumed to satisfy the inequalities

1/2

1− δ
< WO <

p

1− δ
. (1)

That is, DM prefers his outside option to choosing an option randomly for each

period, but he prefers choosing an option fitting his needs with probability p each period

to his outside option. Consequently, DM would like to fire an incompetent adviser, but

would prefer to keep a competent adviser if this adviser reveals his signal truthfully in

every period.

2.1. Strategies, Value Functions and Equilibrium

I use perfect Bayesian equilibrium (referred to as “equilibrium” from here onward) as

main solution concept. In any such equilibrium the incompetent type will always rec-

ommend his bonus option: the incompetent type cannot influence the probability with

which DM’s needs are satisfied because both options are equally likely to do so from the

point of view of the incompetent type. Consequently, recommending his bonus option

has – in expectation – the same consequences for future play as recommending the other

option, but the bonus option gives an immediate payoff of 1.

the reason why he seeks advice in the first place). Think of a person googling “Italian restaurants in
Manhattan” or a patient asking a physician for the right medication. Another example would be that
customers in financial advice usually do not know the bonuses that are associated with all possible
investments. In these cases, advice is an experience good.
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Lemma 1. In every perfect Bayesian equilibrium, the incompetent adviser recommends

the bonus option in every period (regardless of history).

As the incompetent type’s behavior does not require any further analysis I will refer

with “adviser” (A) to the competent type in the remainder of the analysis.

For some of the results, I will focus on Markov equilibrium as solution concept which

is a common refinement of perfect Bayesian equilibrium. Markov strategies depend

only on the state variable which is the adviser’s reputation α and observations in the

current period. In other words, a Markov strategy for A depends on the identity of the

bonus option and the belief α. A Markov strategy for DM depends on whether the

recommendation fitted DM’s needs in this period and the belief α. A mixed strategy of

DM is denoted by two measurable functions (β+, β−) where β+ : [0, 1] → [0, 1] assigns

to each α the probability with which DM continues the game if the recommendation

of the current period has fitted his needs. β− : [0, 1] → [0, 1] assigns to each belief

α the probability with which DM continues if the recommendation did not fit DM’s

needs. Note that these two functions will not be identical in general. Put differently,

the probability of stopping the game in a given period t will not only depend on the

reputation but also on whether the recommendation in t fits DM’s needs or not. It is

convenient to let β+ and β− depend on the updated belief (after observing whether the

recommendation has fitted DM’s needs) and I will follow this convention.8 A mixed

Markov strategy of A can be written as s : [0, 1]×{l, h} → ∆{l, h} where s(α, b) denotes

the probability distribution over recommended options if A’s reputation is α and his

bonus option is b ∈ {l, h}. A profile of Markov strategies that constitutes a perfect

Bayesian equilibrium is called “Markov equilibrium”.

A’s value function in a given Markov equilibrium is denoted by V : [0, 1] → R+.

That is, V (α) denotes A’s expected discounted payoff stream at the very start of a

period, i.e. before observing the identity of the bonus option, if A has reputation α.

Similarly, DM’s value function is denoted by W : [0, 1]→ R+. For some initial belief α

I denote the updated belief in case the recommendation has (not) fitted DM’s needs by

α+ (α−). When using Markov equilibrium as a solution concept I will restrict myself to

“informative” Markov equilibria which I define as Markov equilibria in which α+ ≥ α−

for all α ∈ [0, 1].9 That is, the competent type is at least as likely to recommend the

option fitting DM’s needs as the incompetent type and consequently a recommendation

8Note that this is equivalent to having these functions depend on the belief at the beginning of a
period because DM’s strategy depends directly on whether the recommendation has fitted his needs
or not.

9The restriction to informative Markov equilibria is without loss of generality if – instead of having
directly payoff relevant recommendations – DM is allowed to choose an option himself after receiving the
recommendation. The reason is that DM would simply choose the option that was not recommended
if the competent type gave “worse” advice than the incompetent type.
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fitting DM’s needs will not worsen A’s reputation.10 From here onward, I will refer to

informative Markov equilibrium simply as Markov equilibrium.

The restriction to informative Markov equilibria leads to the following technical

result which states that A’s expected future payoff stream is more valuable after a

fitting than a non-fitting recommendation.

Lemma 2. Let V be the value function in a Markov equilibrium. Then, β+(α+)V (α+) ≥
β−(α−)V (α−).

A’s expected utility in a given period can be written as

q δβ+(α+)V (α+) + δ(1− q)β−(α−)V (α−) + 1bonus

where q is the probability that the recommendation satisfies DM’s needs (which depends

on the specific recommendation) and 1bonus is the indicator function for the bonus

option, i.e. it is 1 if A recommends the bonus option and 0 otherwise. As lemma 2

states that β+(α+)V (α+) ≥ β−(α−)V (α−), it is clear that A will always recommend

option h if option h is the bonus option: This recommendation maximizes the chance

of improving his reputation and also pays him a bonus. If option l is the bonus option,

however, then A might recommend either option depending on the exact values of p,

β+(α+)V (α+) and β−(α−)V (α−). That is, A will only recommend option h if expected

future benefits in form of reputation gains from good advice offset the foregone bonus.

The following lemma states this more formally.

Lemma 3. Let V be A’s value function in a Markov equilibrium. A’s strategy in Markov

equilibrium satisfies the following:

1. if option h is the bonus option, A recommends option h;

2. if option l is the bonus option, A recommends option h only if

β+(α+)V (α+)− β−(α−)V (α−) ≥ 1

δ(2p− 1)
; (2)

and recommends option l only if the reverse inequality holds.

A is willing to mix if and only if (2) holds with equality.

DM’s optimal strategy is relatively simple: He ends the game if his expected payoff

(in t+1 and following periods) from continuing the game is lower than his outside option

10While non-informative equilibria are economically somewhat nonsensical, they could in principle
exist because a competent A has the ability to give worse advice than an incompetent A. If DM expects
A to do so (at some point of the game), then it might be a best response for A to give bad advice (at
this point of the game) to improve (!) his reputation: fitting advice would then be interpreted as being
more likely to be given by an incompetent type and therefore reduce α.
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WO. If the competent type recommends the option fitting DM’s needs with probability

q (given reputation α), then DM’s value is

W (α) = (αq + (1− α)/2)(1 + δW (α+)) + (α(1− q) + (1− α)/2)δW (α−). (3)

As long as W (α) ≥ WO, it is optimal to continue. DM is willing to use a mixed strategy

if and only if W (α) = WO and stops the game if W (α) < WO.

For future reference, denote – for a given initial belief α – the updated beliefs if A

always recommends option h (regardless of the identity of the bonus option) by α+
h and

α−h :

α+
h =

αp

(1− α)/2 + αp
(4)

α−h =
α(1− p)

(1− α)/2 + α(1− p)
. (5)

If A always recommends the bonus option (even if it is option l), then A behaves exactly

like the incompetent type. This means that DM’s posterior belief will equal his prior

belief, i.e. α+ = α = α−. The updated beliefs will be between α and the ones in (4)

and (5) if A mixes between always recommending option h and always recommending

the bonus option.

3. Results

If the adviser’s reputation is sufficiently low, it is optimal for DM to stop the game.

This follows almost directly from the assumption that DM’s outside option is strictly

better than receiving advice from an incompetent adviser forever, see (1). If DM is

almost sure to face an incompetent adviser, it will therefore be optimal for him to fire

the adviser.

Proposition 1. In equilibrium, there exists an α > 0 such that DM ends the game

whenever α < α.

The more interesting result is that DM will also end the game (with some proba-

bility) if the adviser’s reputation is sufficiently high. The intuition for this result is as

follows: Suppose DM continued for sure if α is above some threshold α̃ < 1. For α

close enough to 1, A would then be very sure that DM would continue even if he gave

repeatedly bad advice. This is true as α− is very close to α if α is close to 1, see (5).

Put differently, A has hardly any dynamic incentives to give good advice. Statically,

however, he has an incentive to recommend the bonus option as this gives an immediate

payoff of 1. A will therefore recommend the bonus option no matter what his signal is.

Consequently, both adviser types behave in the same way which has two implications:
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First, the belief updating stops, i.e. α = α+ = α−. Second, DM’s expected payoff is

below his outside option as this situation gives him the same payoff as receiving advice

from an incompetent adviser forever. Clearly, this contradicts our starting point that

DM continues whenever α > α̃. As such an α̃ < 1 does not exist, we can conclude

that there are beliefs arbitrarily close to 1 where DM quits the game with positive

probability. Recall that DM ends the game only if his continuation value is (weakly)

less than his outside option. Consequently, DM’s continuation value will equal WO for

some beliefs α arbitrarily close to 1. Having an adviser with high reputation is therefore

not necessarily valuable. The following theorem states this result more formally and

strengthens it for Markov equilibria in which both players choose piecewise continuous

strategies.11

Theorem 1. In every Markov equilibrium there exists an ε > 0 such that there is a

sequence of beliefs (αi)
∞
i=1 converging to 1 where DM ends the game with at least ε

probability for every element of the sequence.

If Markov equilibrium strategies are piecewise continuous, then there exists an ᾱ < 1

such that W (α) = WO for all α > ᾱ. Furthermore, there exists an ε̃ > 0 such that DM

continues with probability β−(α−) < 1 − ε̃ in case the recommendation does not fit his

needs for all α > ᾱ.

The previous theorem established that DM will fire the adviser with positive prob-

ability for high α. However, if this probability is close to zero, one could argue that it

has little economic relevance. The intuition given above should already illustrate that

this is not the case because similar problems as for zero quitting probability also emerge

with very small positive quitting probabilities. The following lemma strengthens this

intuition by stating that DM quits the advice relationship almost certainly within T

periods – where T is some finite number depending on the parameters – no matter what

the current belief is. Note that in the following lemma the upper bound on the length of

the advice relationship neither depends on the (initial) belief α nor on the equilibrium.

Lemma 4. Let ε > 0 and define12

Tε =

⌈
log(ε)

log (1− (1− p)T ′ε′)

⌉
T ′ where ε′ =

1− δ
2

and T ′ =

⌈
2

log(1− δ)
log(δ)

− 1

⌉
.

The probability that DM ends the game within Tε periods is at least 1 − ε in every

equilibrium.

11It is natural to state this result for Markov equilibria because it is directly based on the belief α.
However, the logic above clearly implies a related result for all perfect Bayesian equilibria: there is
no equilibrium in which DM continues with probability 1 whenever his belief is above some threshold
α̃ < 1; see proposition 3 for a formal result along these lines.

12The ceiling dxe is the smallest integer above x.
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The previous lemma is based on the following idea. If it is sufficiently unlikely that

A is fired – in case of (repeated) bad advice – in the following T periods, then A finds

it optimal to recommend his bonus option even if it is option l. However, in this case

DM should better fire A right away. Lemma 4 has a direct implication on the expected

length of the relationship. Again, the result holds for every (initial) belief α and every

equilibrium.

Theorem 2. The expected length of the advice relationship in equilibrium is finite and

bounded from above by

T̄ = T ′
(

2− 1

log(1− (1− p)T ′(1− δ)/2)

)
.

Theorem 2 is driven by the fact that DM fires the adviser when his reputation is

high and not just by the possibility that the adviser is fired due to incompetence as

in proposition 1. To see this, consider α → 1. For beliefs arbitrarily close to 1, the

time until which the belief α could possibly fall below the incompetence threshold α

is going towards infinity. Nevertheless, the expected length of the game is below T̄ for

any belief. That is, the finiteness of the expected game length is driven by DM ending

the game for high beliefs. For low beliefs, the result is, of course, driven by the fact

that DM fires the adviser if his reputation is too low.

The previous results derived properties of (Markov) equilibria without ensuring the

existence of such equilibria. Similar to normal cheap talk models, an equilibrium in

which no meaningful advice is given (“babbling equilibrium”) will always exist. In the

framework of this paper, the babbling equilibrium takes the following form: DM always

ends the game and A always recommends his bonus option. As usual in cheap talk,

equilibria with (some) information transmission may also exist. The following result

states a necessary and sufficient condition for the existence of Markov equilibria in

piecewise continuous strategies in which some information is transmitted. I will refer

to such equilibria as communication equilibria.

Definition 1. A communication equilibrium is a Markov equilibrium in piecewise con-

tinuous strategies such that (i) for some interval of beliefs (α1, α2) A recommends option

h with strictly positive probability even if it is not the bonus option, i.e. s(α, l) > 0 for

α ∈ (α1, α2), and (ii) for some interval of beliefs (α3, α4) DM continues with strictly

positive probability, i.e. β+(α) + β−(α) > 0 for α ∈ (α3, α4).

Proposition 2. If

p ≥ 3

4
+

1− δ
2δ

, (6)

then there exists a communication equilibrium in which s(α, l) > 0 and β+(α) > 0 for
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all beliefs

α > α =
WO(1− δ)− 1/2

p− 1/2
.

If there exists a communication equilibrium, then (6) holds and

lim
α→1

V (α) =

[
4p− 1

4p− 2
,

4p− 3

(4p− 2)(1− δ)

]
. (7)

Condition (6) holds if A’s signal is sufficiently informative and players are sufficiently

patient. In particular, p > 3/4 and δ > 2/3 are both implied by (6). This condition

intuitively makes sense in so far as to incentivize A to give useful recommendations

instead of cashing in on his bonus immediately, A must enjoy substantial payoffs in the

future. A cannot be incentivized by future payoffs if he discounts those a lot. If the

signal technology is bad, the welfare gains from advice are small. DM has to leave some

of these welfare gains to the adviser to incentivize him; some rents go to the incompetent

type and sometimes A will recommend his bonus option even if it is option l (theorem

1 implies that this has to be true in every communication equilibrium). If the signal

technology is too bad, the payoff left for DM is simply too small to prevent him from

taking his outside option.

The last part of proposition 2 illustrates a basic commitment problem A faces.

Suppose A could commit to the strategy“always recommend option h”. This would give

DM the highest possible payoff and imply that DM does not stop the game if he believes

that A is sufficiently competent. What is more surprising is that this commitment

would also increase the payoff of A. Note that the probability of recommending the

bonus option would be 1/2 in each period entailing that the expected payoff of A under

commitment would be 1/(2(1 − δ)). It is straightforward to verify that this payoff is

higher than the upper bound of limα→1 V (α) in (7).

Corollary 1. A’s payoff in a communication equilibrium is – for high values of rep-

utation – lower than the commitment payoff of a competent type: limα→1 V (α) <

1/(2(1− δ)).

3.1. Relaxing Assumptions

In this section, I want to discuss how some of the assumptions could be relaxed. First,

the assumption that A and DM share the same discount factor can be discarded without

affecting any result or proof as long as the two discount factors are strictly less than 1.

Second, one might wonder about a signal technology that is not constant over time; that

is, the posterior p of a competent type might depend on the specific period. Strategies

should then naturally depend on the time period as well, implying that Markovian

strategies make less sense in this setting. The results on the (expected) length of the

game, however, still hold true if one substitutes p by sup({pt}) where pt is the competent
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type’s posterior in period t and the supremum is assumed to be strictly below 1. With

this adjustment the proofs of lemma 4 and 2 will go through and the results will hold.

Third, one can allow for more than 2 options at the expense of a somewhat more

cluttered notation; see an earlier working paper version of this paper (Schottmüller,

2016).

Finally, I want to discuss the possibility of correlation between A’s bonus option and

the option fitting DM’s needs. First, consider within period correlation of the competent

type’s bonus option with DM’s needs. As long as the correlation is imperfect, this will

not change theorems 1 and 2 qualitatively because the only relevant part of the signal

technology is A’s posterior belief which was denoted by p. Correlation will now imply

that the posterior p can depend on the identity of the bonus option. As long as the

posterior is strictly between 1/2 and 1, the structure of the problem does not change

and the proofs go through using the higher of the possible posteriors p. (Of course, also

the updating of DM’s belief α will be affected but this does not change the results.)

Second, consider correlation over time. More precisely, the probability that A’s bonus

option coincides with the option fitting DM’s needs might depend on whether it had also

done so in the previous period.13 Note that this form of correlation is irrelevant for A’s

decision problem because he knows his bonus option when making his recommendation

(and the correlation does not improve the accuracy of his signal). The correlation

will affect DM’s beliefs and decisions. The proofs of theorems 1 and 2 (and lemma 4)

are based on scenarios where A wants to recommend his bonus option although it is

option l. Hence, as long as this scenario has positive probability – that is, so long as the

correlation is not perfect – the same situation emerges and the results hold qualitatively.

One might also wonder whether it is possible to restrict the strategy space such that

DM’s decision will depend upon his belief α only (and not on whether the recommen-

dation in the current period fitted his needs or not). Put differently, could one impose

β+ = β−? Unfortunately, no communication equilibrium exists in this restricted class.

This result is obtained by Mailath and Samuelson (2001) in a very similar model. Their

proposition 2.3 implies that strategies in a Markov equilibrium using this restricted

strategy space cannot be piecewise continuous (unless A babbles). They construct an

equilibrium with an infinite number of discontinuities (proposition 2.2). However, the

adviser’s strategy in this equilibrium is equivalent to a babbling equilibrium for all but

a countable number of beliefs α. I will briefly sketch the argument why no Markov

equilibrium with piecewise continuous strategies apart from the babbling equilibrium

exists. Consider β(α+)V (α+) − β(α−)V (α−) as α → 1. With piecewise continuous

strategies V and β will be continuous for all α above a certain threshold. From Bayes’

13Here I still maintain the assumption that at the start of the period DM views both options as
equally likely to fit his needs. Otherwise, the strategic effects discussed, for example, in Ottaviani and
Sørensen (2006a,b) will play a role.
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rule, see (4) and (5), it then follows that α+ − α− → 0 as α → 1. Together with the

continuity of V and β, this implies that β(α+)V (α+) − β(α−)V (α−) converge to 0 as

α→ 1. Consequently, A will recommend his bonus option by lemma 3 for beliefs above

some threshold α̂ < 1. Now suppose that – for some lower belief – A recommended

option h with positive probability if option l is his bonus option. Looking at the highest

such belief α, it is evident that DM should stop the game after a fitting recommendation

as (i) α+ > α and (ii) A always recommends his bonus option for all beliefs above α.

But in this case it is certainly not optimal for A to recommend option h if option l is

his bonus option and his reputation is α which contradicts the fact that he does so with

positive probability. Hence, no such α exists and babbling is the only Markov equilib-

rium. The intuitive assumption that DM’s equilibrium strategy depends on whether

he just got fitting advice (or not) is therefore essential for constructing communication

equilibria.

4. Extensions

4.1. Transferable utility

So far, DM could not use monetary payments to incentivize the agent. One might

conjecture that using monetary rewards for fitting advice could mitigate the moral

hazard problem that leads to the firing of advisers with a high reputation. This section

shows that theorems 1 and 2 continue to hold if monetary transfers from DM to A are

allowed.

The model now allows DM to transfer a wage w to A at the end of each period t;

i.e. at the same time when DM decides whether to continue or to stop. (The exact

timing of the payments does not matter for the results.) A’s payoff in a given period is

1 + w if he recommends his bonus option and w else where w is the wage payment he

receives. DM’s payoff in a given period is 1−w if the recommendation fits his needs and

−w else. In the spirit of relational contracting, I will not allow the players to commit

to an enforceable payment schedule but will consider self enforcing transfers only.14 I

will restrict the analysis of this section to informative equilibria, i.e. perfect Bayesian

equilibria in which α+ ≥ α ≥ α− for all α ∈ [0, 1] and all subgames.

It then remains true that DM must fire A with some probability for some arbitrarily

high beliefs. The intuition here is similar to the one presented previously: Suppose

DM never fired the adviser if his belief is above some thereshold ᾱ < 1. For every

T ∈ N one can then find a belief αT sufficiently close to 1 such that an adviser with

reputation αT will maintain a reputation above ᾱ even if A’s recommendations do not

14With commitment, the usual way of solving moral hazard problems – selling the enterprise to the
agent – will work. In the context of this paper then, this would entail that DM offers A to commit
to paying him 1 unit for every fitting recommendation if A pays p/(1 − δ) − ε to DM ex ante. The
competent type will accept the offer and the incompetent will not.
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fit DM’s needs for T consecutive periods. An adviser with reputation αT (or higher)

can therefore guarantee himself a payoff of
∑T

t=0 δ
t by recommending his bonus option

T times. Hence, his equilibrium payoff must be at least
∑T

t=0 δ
t. For sufficiently high T

one can show that
∑T

t=0 δ
t is higher than the welfare the advice relationship generates.

Consequently, DM would be obliged to have an expected payoff below the payoff he

would obtain by immediately stopping the game which is impossible in equilibrium.

To state the following results define η = (1 − δ)WO − 1/2 and note that η > 0 by

(1).

Proposition 3. In an informative equilibrium, there exists no ᾱ < 1 such that DM

ends the game with probability less than ε = (η − ηδ)/(2− 2ηδ) > 0 in all subgames in

which his belief is above ᾱ.

Similar results as in lemma 4 and theorem 2 also still hold.

Proposition 4. Let ε > 0 and define

Tε =

⌈
log(ε)

log (1− (1− p)T ′ε′)

⌉
T ′ where ε′ =

η(1− δ)
2− 2δη

and T ′ =

⌈
log(η/2)

log(δ)

⌉
.

The probability that DM ends the game within Tε periods is at least 1 − ε in every

informative equilibrium.

The expected length of the advice relationship in equilibrium is finite and bounded from

above by

T̄ = T ′
(

2− 1

log(1− (1− p)T ′ε′)

)
.

There are two caveats which should be made to the results above. First, the results

do not hold if A can also make payments to DM. In this case, there are equilibria in

which both types of the adviser will compensate DM for bad recommendations and

DM will continue forever, regardless of which type he is facing. Such equilibria exist

because, from a total welfare point of view, it is efficient for DM to interact even with

an incompetent type: the incompetent type’s bonus payments are more valuable than

DM’s outside option by (1). It is then unsurprising that the efficient outcome can be

obtained with payments from A to DM if players are sufficiently patient.

Second, to derive the results it was assumed that A’s gain from recommending his

bonus option was as high as DM’s payoff from receiving a fitting recommendation –

both were assumed to be 1. Equilibria in which A recommends option h even when his

reputation is high can be sustained if A’s payoff from recommending the bonus option

is sufficiently small. Intuitively, A could be incentivized to always recommend option h

if he received an incentive payment of β/p for fitting recommendations where β denotes

the payoff that A can get from recommending his bonus option. For β sufficiently small,
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DM would be willing to make this incentive payment to obtain the best possible advice

from a competent type. Consequently, the results above only hold if β is not too small.

4.2. Competition among advisers

One can easily imagine situations in which a decision maker has to decide which of

several advisers to consult. In this vein, DM’s outside option in the model could be

interpreted as the value he assigns to obtain advice from the next best adviser. This

section briefly discusses three settings that reflect this idea and shows that the results

of the paper carry over to these alternative model settings.

First, assume that there is a finite number of potential advisers – for simplicity, say

two. DM’s initial belief αi0 that adviser i is competent might differ between these two

advisers. Both advisers have the same preferences and signal technology as in the main

model and their types are assumed to be uncorrelated. Furthermore, DM can ask only

one adviser each period. First, assume that DM still has an exogenous outside option

satisfying (1). At the end of a period DM has then three actions: stop the game and

take the outside option, stay with the current adviser or switch to the other adviser.

In this setting, there are direct analogues of theorems 1 and 2. The reason is that

both results were proven by showing that A would prefer to recommend his bonus

option with probability 1 if the conditions of the theorems were not satisfied (and in

this case DM prefers to stop). Note that A is even more tempted to recommend his

bonus option in the current setting because there is a possibility that instead of stopping

the game, DM will switch and then switch back later. Consequently, the proofs still

apply. Theorem 1 implies that for a fixed α−i, there is no ᾱ such that DM always

chooses adviser i if αi > ᾱ. Since this holds for any given and fixed α−i, the statement

is also true without conditioning on α−i: there is no ᾱ such that DM chooses adviser i

whenever αi > ᾱ. Similarly, lemma 4 and theorem 2 still hold but state now that DM

will end the game or switch (possibly to an adviser with a worse reputation) within the

given number of periods.

As a second setting, consider the same setting as above, but eliminate the exoge-

nous outside option. That is, DM has only the choice between staying with the cur-

rent adviser or switching and DM’s outside option is therefore completely endogenized.

Note that this game still has a babbling equilibrium in which both advisers will always

recommend their bonus option and DM’s strategy is independent of whether the recom-

mendations have fitted his needs or not, for example, DM always stays with adviser 1.

In a literal sense, this babbling equilibrium violates theorem 1 as DM always stays with

adviser 1. However, the following analogue to theorem 1 holds trivially. If in a given

equilibrium there exists an ᾱ such that DM stays with adviser i with probability 1 for

all αi > ᾱ, then babbling emerges in all subgames with αi > ᾱ.15 A similar analogue

15Following the argument in the proof of proposition 3, this result could be strengthened with regard
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to theorem 2 would state that the adviser will always recommend his bonus option if

the expected length of the advice relationship is above T̄ in a given subgame.

Third, I want to consider the possibility that DM has the options to either continue

or to reset. Reset means that DM starts with a new adviser of a given reputation α0.

That is, the outside option WO is again endogenous. In contrast to the previous setting,

DM cannot return to advisers he previously fired. The following result is similar to the

sufficiency part of proposition 2.

Proposition 5. A communication equilibrium exists if (6) holds.

Furthermore, a similar line of thoughts as earlier shows the same results as the second

setting: A will always recommend his bonus option for sufficiently high α if there is

an ᾱ such that DM continues for sure whenever α > ᾱ. A will always recommend his

bonus option if the expected length of the advice relationship with the current adviser

exceeds T̄ as given in theorem 2. Put differently, theorems 1 and 2 hold unless there is

babbling.

5. Discussion

The results of this paper establish an inefficiency: the game is expected to end in finite

time although the advice relationship lasts forever in a first best world. The inefficiency

arises due to the assumption that A cannot commit to a strategy, e.g. the strategy

“always recommend the option most likely to fit DM’s needs”, because his signal is

private. Of course, the private nature of A’s signal captures exactly the reason why

DM needs to get advice. It is perhaps unsurprising that, for example, a consumer may

buy the wrong investment products if his financial adviser receives a bonus for selling

certain products. The inefficiency established in this paper is, however, of a somewhat

subtler nature. Here, not only will the consumer purchase the wrong products, he

will also switch to worse financial advisers after some time or not take any advice –

depending on how the outside option in the current model is interpreted.

One possible solution to the problem would be to resolve the underlying difference

in objectives; that is, to eliminate A’s bonus payments. This idea was, for example,

expressed in the “Global Analyst Research Settlements” (2003) between US regulators

and 10 top investment banks in the aftermath of the dot com bubble. This settlement

required banks to separate research and investment banking and stated that the com-

pensation of analysts cannot depend on investment banking activities.16 The motivation

to the case where DM stays with adviser i with probability of at least 1− (n−nδ)/(2− 2ηδ) whenever
αi > ᾱ. As in the proof of proposition 3, this would imply that adviser i will always recommend his
bonus option for sufficiently high α.

16See https://www.sec.gov/news/speech/factsheet.htm for more information. (accessed on Au-
gust 1, 2017)
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behind this rule was the reality that analysts had often recommended assets that the in-

vestment branch of their employer had to place in the market (although this action was

not always to the benefit of the analysts’ customers). However, as many commentators

have pointed out, analysts still receive trading commissions entailing that the prob-

lem of non-aligned incentives between analysts and customers was only mitigated but

not resolved. Trading commissions are, of course, an instrument for resolving a moral

hazard problem between analysts and their employers. Consequently, they cannot be

eliminated without creating an inefficiency at a different place. In other applications,

it is not even possible to eliminate the misalignment of interests. In case of a political

adviser, the bonus might simply be interpreted as a personal political preference. Such

preferences and resulting differences in opinions appear to be inevitable. Nevertheless,

the inefficiency established in this paper can be a rationale for regulations as the one

mentioned above.

The paper explains why most advice relationships are short lived, which leads to the

question: which advice relationships can last long? One possibility is that there is no

conflict of interest, as mentioned in the previous paragraph. Another possibility is that

players are very patient. The bounds T ′ in lemma 4 and T̄ in theorem 2 converge to

infinity as δ → 1. Intuitively, A is not tempted to get his bonus today quickly if there

is almost no discounting and he might therefore be willing to give better advice today

in order not to risk future bonus payments. Of course, the opposite also holds: For low

δ, no meaningful advice is possible as the game with heavy discounting is similar to the

static game where A will always recommend his bonus option.

6. Conclusion

This paper has analyzed the question why advisers are fired. Two reasons for their

dismissal are identified in a repeated game model. First, incompetence; that is, advisers

who are believed to be of low quality are fired. Second, (justified!) mistrust. Advisers

who are believed to be competent are not afraid of being fired due to incompetence. In

equilibrium, these advisers will therefore push their own agenda, i.e. recommend actions

that foster their own benefit more than the decision maker’s benefit. Consequently, the

decision maker is indifferent to firing them and will do so with positive probability

whenever he receives bad advice. The interplay of these two effects can imply that

the decision maker receives the most informative recommendations from an adviser

whose qualification is unclear. Such an adviser tries to give good advice because he is

afraid to be perceived as being of so low quality that he is fired due to incompetence in

case his advice turns out to be bad. The firing of competent advisers is inevitable in

equilibrium but inefficient. Independent of qualification and beliefs, the expected length

of the advice relationship is therefore limited although advice by a qualified adviser is
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efficient. Thus, the presence of private benefits for the adviser, like bonus payments,

does not only lead to bad advice, it also implies that decision makers drop (eventually)

the best advisers and end up with inferior (or no) advice.

The model of this paper helps to identify the effects mentioned above and paves the

way for further research. For example, the literature on sell-side analysis in financial

advice – see, for example, Fang and Yasuda (2009); Jackson (2005) – is concerned

to what extent reputation effects can alleviate opportunistic behavior by analysts.17

While this literature establishes empirically that more reputable analysts provide better

predictions on average, this result is based on assuming either a binary or a linear

functional form for this relationship. However, the model of this paper suggests a non-

monotonic (possibly inversely U-shaped) relationship.18 On the theoretical side, one

might explore instruments that a decision maker could use to discipline advisers such

as own (costly) acquisition of noisy information and consulting multiple advisers at the

same point of time. Another interesting question to be raised is the effect of learning.

Here, an adviser might receive more precise signals concerning the decision maker’s

needs as he interacts with the decision maker repeatedly. These and other possibilities

are beyond the scope of the current paper and left for future research.

17“Sell-side analysis” refers to the situation where employees of a broker provide analysis and stock
recommendations to potential customers for free in the hope of generating an order that yields a
commission.

18The possibility of non-monotonicities seems to have escaped the attention of the authors, e.g. Fang
and Yasuda (2009, p. 3736) write “Because analysts with a better reputation have greater long-term
benefits to lose, theory predicts that they are more likely to refrain from opportunism.” My paper has
demonstrated that this argument, though plausible at first sight, might not be true in equilibrium.
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Appendix

Proof of lemma 1: Recommending the bonus option yields an expected payoff of

1 + v+/2 + v−/2 where v+ (v−) denotes the expected discounted future payoff stream

after a fitting (non-fitting) recommendation. Recommending the non-bonus option has

expected payoff v+/2 + v−/2 < 1 + v+/2 + v−/2.

Proof of lemma 2: Suppose to the contrary that β+(α+)V (α+) < β−(α−)V (α−).

Then, A has an incentive to recommend options that do not fit DM’s needs as this

will give him the higher continuation value. Consequently, A will recommend either his

bonus option or option l. Hence, a competent adviser will give (weakly) worse advice

than an uniformed adviser which implies α+ ≤ α−. In case of α+ = α−, β+(α+)V (α+) <

β−(α−)V (α−) cannot hold and in case α+ < α− the equilibrium is not informative.

Proof of lemma 3: The first item was explained in the main text. For the second

item, let option l be the bonus option. Recommending option h will then give an

expected payoff of p δβ+(α+)V (α+) + δ(1− p)β−(α−)V (α−) and recommending option

l will yield an expected payoff of (1 − p) δβ+(α+)V (α+) + δpβ−(α−)V (α−) + 1. The

former is higher than the latter if and only if (2) holds.

Proof of proposition 1: DM’s expected payoff from continuing is bounded from

above by δαp/(1− δ) + δ(1− α)/(2(1− δ)). For α sufficiently low (but strictly higher

than 0), this upper bound is less than δWO as WO > 1/(2(1− δ)) by (1).

Proof of theorem 1: The first part is proven by contradiction, and the proof follows

the argument in the main text. Suppose the statement was not true; i.e. suppose

that there was a Markov equilibrium such that for no sequence (αi)
∞
i=1 converging to

1 there exists an ε > 0 such that DM ends the game with at least ε probability at

each element of the sequence.19 This implies that for every ε′ > 0 there exists an

ᾱε′ < 1 such that DM continues with probability greater than 1 − ε′ for all α ≥ ᾱε′ .

Note that α − α− converges to zero as α → 1 (for any strategy A employs); see (5),

which constitutes a lower bound on α− for any strategy A might use. This implies

the following: For every T ∈ N and ε′ > 0 there is a αTε′ ∈ (ᾱε′ , 1) such that DM’s

belief after T consecutive recommendations that did not fit DM’s needs will still be

above ᾱε′ . This implies that at the belief αTε′ (for T high enough) A will find it strictly

optimal to recommend his bonus option, even if it is option l: if the belief is αTε′ and

A observes that the bonus option is option l, then he can earn a deviation payoff of at

least 1 + δ(1− ε′) + δ2(1− ε′)2 + · · ·+ δT (1− ε′)T by recommending the bonus option in

this and the following T periods. Not recommending the bonus option would lead to a

19It is immaterial for this proof whether DM ends the game only when receiving a non-fitting
recommendation or not. The reason is that A’s signal is noisy. Hence, even when recommending
option h there is a probability 1 − p > 0 of not fitting DM’s needs. If DM ends the game with
probability ε̃ > 0 if the recommendation does not fit, then he ends the game with at least probability
ε = (1− p)ε̃.
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payoff of at most δ/(1− δ) = δ+ δ2 + δ3 + . . . . For T large enough and ε′ small enough,

the deviation payoff is clearly higher than the upper bound on the payoff obtained by

other strategies. By choosing T high and ε > 0 small enough, this establishes the claim

that A always recommends the bonus option if his reputation is sufficiently high (i.e.

αTε′ or higher). But then αTε′ = α+
Tε′ = α−Tε′ and therefore W (αTε′) = 1/(2−2δ) < WO

by (1); i.e. DM’s best response is to end the game at belief αTε′ contradicting the

definition of ᾱε′ (and αTε′ > ᾱε′).

For the second part, note that piecewise continuity of the strategies implies piecewise

continuity of the value functions. In particular, V is piecewise continuous and therefore

has bounded total variation, which will be used below. Note that whenever A recom-

mends the bonus option for sure (even if it is option l) at some α, then α = α+ = α−

and therefore ending the game is DM’s best response when α is reached, as continuing

would lead to a payoff of 1/(2− 2δ) < WO.

Let Aε̃ be the set of α such that (i) A recommends option h with positive probability

even if it is not the bonus option, and (ii) β−(α−) > 1 − ε̃. If the last claim of the

theorem holds, then Aε̃∩(ᾱ, 1) is empty for ε̃ > 0 small enough and ᾱ < 1 large enough.

Suppose this is not the case, i.e. suppose Aε̃ ∩ (ᾱ, 1) is non-empty for all ε̃ > 0 and

ᾱ < 1. For α ∈ Aε̃, the difference β+(α+)V (α+)−β−(α−)V (α−) is bounded from below

by a strictly positive number by lemma 3 and the optimality of recommending option h

if the bonus option is option l (i.e. the definition of Aε̃). Together with β−(α−) > 1− ε̃,
this implies that V (α+) − V (α−) is bounded from below as well for ε̃ > 0 sufficiently

small and α ∈ Aε̃.
Now note that α+−α− converges to zero as α approaches 1. Therefore, it is possible

to construct an increasing sequence (αi) of elements of Aε̃ such that α−i+1 ≥ α+
i . This

can be done as for any given a+
i there exists an â+

i such that α− > a+
i for all α > â+

i (this

is true because α−α− converges to zero as α converges to 1, and Aε̃∩(ᾱ, 1) is non-empty

for all ᾱ < 1). The construction of this sequence and the fact that V (α+) − V (α−) is

bounded from below by a strictly positive number then imply that V is a function of

unbounded total variation. This, however, contradicts the piecewise continuity of V .

Hence, Aε̃∩ (ᾱ, 1) has to be empty for ᾱ < 1 high enough and ε̃ > 0 small enough. This

establishes the last claim of the theorem.

The result that W (α) = WO for almost all α > ᾱ follows directly from the fact that

DM ends the game with positive probability for all α > ᾱ – the just proven last claim

of the theorem – which is only optimal if W (α) = WO.

Proof of lemma 4: Take an arbitrary subgame starting in an arbitrary period t and

keep it fixed for the rest of the proof. First, I want to establish that there is at least

one continuation path of play of length (up to) T ′ such that the probability that DM

stops the game along this path is at least ε′ > 0 for sufficiently high T ′ and sufficiently
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low ε′ > 0. If DM’s strategy is such that he stops with some probability in t, there is

nothing to show. Hence, I will assume otherwise.

If T ′′ is sufficiently large and A’s equilibrium strategy is such that he recommends

his bonus option for the next T ′′ periods for sure (even if it is option l), then DM will

find it optimal to end the game immediately as his equilibrium payoff from continuing

would be bounded from above by (1 + δ + · · · + δT
′′
)/2 + δT

′′+1p/(1 − δ) which is less

than WO for T ′′ high enough by (1). Hence, by choosing T ′′ sufficiently high there will

be some continuation path on which A recommends option h (with strictly positive

probability) in period t′ ∈ {t, . . . , T ′′} even if the bonus option is option l. Note that

A will do so only if there is a continuation path (from t′) onward on which DM ends

the game with some probability ε′′ > 0 within the next T ′′′ periods (for some T ′′′ high

enough): Otherwise, A could profitably deviate by recommending his bonus option for

the next T ′′′ periods. Letting T ′ = T ′′ + T ′′′ and ε′ = ε′′ yields the result that starting

from t there is at least one continuation path of play of length (up to) T ′ such that the

probability that DM ends the game along this path is at least ε′ > 0.

Next, I will show that ε′ = (1 − δ)/2 and T ′ = d2 log(1 − δ)/ log(δ) − 1e have the

desired properties. Suppose otherwise, i.e. suppose there is no continuation path of

of length T ′ such that DM ends the game on this path with probability ε′ or higher.

I will show that in this case A will have an incentive to deviate if the bonus option

is option l. By recommending the bonus option, A can achieve a payoff of at least

1 + (1 − ε′)(δ + δ2 + · · · + δT
′
). By sticking to his equilibrium strategy (i.e. not

recommending the bonus option) A will achieve a payoff of at most 0 + δ/(1− δ). With

ε′ and T ′ chosen as above, however, the lower bound on the deviation profit is higher

than the upper bound of the equilibrium profit, i.e. the deviation is profitable:

T ′ =

⌈
2

log(1− δ)
log(δ)

− 1

⌉
≥ 2

log(1− δ)
log(δ)

− 1

⇔ (T ′ + 1) log(δ) ≤ 2 log(1− δ)

⇔ δT
′+1 ≤ (1− δ)2

⇔ δT
′+1

1− δ
≤ 1− δ

⇔ δ
(

1 + δT
′+1 + δT

′+2 + . . .
)
≤ 1

⇔ (1− δ)
(
δ + δ2 + · · ·+ δT

′
)

+ δT
′+1 + δT

′+2 + . . . ≤ 1

⇔ δ + δ2 + . . . ≤ 1 + δ
(
δ + δ2 + · · ·+ δT

′
)

⇔ δ

1− δ
≤ 1 + (1− 2ε′)

(
δ + δ2 + · · ·+ δT

′
)

which implies that the lower bound of the deviation payoff (which is the right hand

24



side but without multiplying ε′ by 2) is strictly higher than the upper bound for the

equilibrium payoff. This establishes that ε′ and T ′ have the desired property.

As the continuation path on which DM’s probability to end the game is (at least) ε′

has positive probability under equilibrium play, by the assumption that A is uncertain

(i.e. p < 1), it follows that the game ends with probability γε′ > 0 in the next T ′ periods

where γ is a lower bound on the probability of the path occurring under equilibrium

play which can be chosen independent of the specifics of the equilibrium and the belief,

i.e. depending only on the precision of A’s signal p. For example, γ = (1− p)T ′ works

and will be used in the remainder.

Hence, the probability that DM does not end the game within 2T ′ periods is at

most (1 − γε′)2. Iterating yields that the probability that DM does not end the game

within mT ′ periods is at most (1− γε′)m. Let m′ be such that ε > (1− γε′)m′ , and let

Tε > m′T ′. Using γ = (1− p)T ′ and T ′, ε′ as derived above yields

Tε =

⌈
log(ε)

log (1− (1− p)ε′)

⌉
T ′.

The result follows.

Proof of theorem 2: Lemma 4 states that the probability that the game lasts longer

than Tε periods is at most ε. As I want to derive an upper bound on the expected

length, I can assume that the probability that the game lasts longer than Tε periods

is exactly ε. As it simplifies the derivation and since I am only interested in an upper

bound, I will actually assume that the probability that the game lasts longer than

T̃ε =
log(ε)

log (1− (1− p)T ′ε′)
T ′ + T ′

equals ε for T̃ε > T ′, which again will increase the expectation as T̃ε ≥ Tε. That is, I

assume that the game lasts at least T ′ periods (which again increases the expectation).

Rearranging yields that the probability that the game’s length is T̂ > T ′ or less is

1− e(T̂−T ′)/B where B = T ′/ log
(
1− (1− p)T ′ε′

)
. Note that B < 0. The corresponding

density is −e(T̂−T ′)/B/B. This allows to compute an upper bound on the expected

length of the game as

T ′ +

∫ ∞
T ′
− T̂ e

(T̂−T ′)/B

B
dT̂ = T ′ +

[
−T̂ e(T̂−T ′)/B +Be(T̂−T ′)/B

]∞
T ′

= 2T ′ −B = T ′
(

2− 1

log(1− (1− p)T ′ε′)

)
.

Proof of proposition 2:
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Sufficiency of (6): The proof is by construction. Let (7) be satisfied and define

α =
WO(1− δ)− 1/2

p− 1/2
,

V̄ =
4p− 1

4p− 2
.

Note that α < 1 by (1). Furthermore, V̄ > 1 as p > 3/4 by (6).

I will show that the following value functions and strategies constitute a Markov

equilibrium:

V (α) =

1 if α ≤ α

V̄ if α > α

W (α) =

1/2 + δWO if α ≤ α

WO if α > α

s(α, h) = 1

s(α, l) =

0 if α ≤ α

(1−δ)WO−1/2
α(p−1/2)

if α > α

β−(α−) = 0

β+(α+) =

0 if α ≤ α

1
V̄ δ(2p−1)

if α > α

where s(α, b) gives the probability with which A recommends option h if option b is his

bonus option. Note that 0 ≤ 1/(V̄ δ(2p− 1)) ≤ 1 by (6).

The above is a Markov equilibrium if and only if the strategies are mutual best

responses and the value functions are consistent with the strategies; i.e. if and only if

the Bellman equations

V (α) = max
sh,sl

{
1

2

[
sh + δq+(sh)β

+(α+)V (α+) + δq−(sh)β
−(α−)V (α−)

]
+

1

2

[
(1− sl) + δq+(sl)β

+(α+)V (α+) + δq−(sl)β
−(α−)V (α−)

]}
W (α) = max

β+,β−

{
q+(α) + δq+(α)β+W (α+) + δq−(α)β−W (α−)

+δ(1− q+(α)β+ − q−(α)β−)WO

}
hold and the strategies are the maximizing arguments (where q+(si) = sip+(1−si)(1−p)
is the probability of giving a fitting recommendation and q−(si) = 1 − q+(si) is the

counter-probability; similarly and with a slight abuse of notation, q+(α) = (1− α)/2 +

α[s(α, h)p+ (1− s(α, h))(1− p)]/2 + α[s(α, l)p+ (1− s(α, l))(1− p)]/2 is the expected
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probability of getting a fitting recommendation and q−(α) = 1−q+(α)). Consistency of

the value functions with the strategies is straightforward to verify, and I will therefore

only briefly explain why the strategies are indeed the maximizing arguments.

Recall that A wants to recommend option h in case the bonus option is option l if

and only if β+(α+)V (α+)−β−(α−)V (α−) ≥ 1/(δ(2p−1)), see lemma 3. DM’s strategy

is chosen such that A is indifferent for α > α. For α ≤ α, recommending the bonus

option is clearly optimal as β+(α+) = β−(α−) = 0.

DM acts optimally when α ≤ α as in this case q+(α) = 1/2 = q−(α) and α+ = α− =

α and therefore stopping the game gives WO (in the next period) while continuing gives

1/2 + δWO which is less than WO by (1). For α > α, s(α, l) is chosen such that DM is

indifferent between continuing and stopping after a fitting recommendation (note that

q+(α) = (1 − δ)WO). After a non-fitting recommendation, DM is either indifferent (if

α− > α) or strictly prefers stopping (if α− ≤ α).

Necessity of (6): This proof is split up into two lemmas:

Lemma 5. In every communication equilibrium, limα→1 s(α, l) > 0.

Proof of lemma 5: Two preliminary observations: First, if A is willing to recommend

option h at belief α even though the bonus option is option l, then necessarily V (α+) >

1/δ (as A could get 1 for sure in this period by recommending the bonus option).

Second, if V (α) > 1, then DM has to play continue (after a fitting recommendation)

with positive probability as otherwise V (α) ≤ 1.

Now let A = {α : s(α, l) > 0} and ā = supA. Note that A is the union of a finite

number of intervals by the assumption that the equilibrium strategies are piecewise

continuous. If ā was below 1, then s(α, l) = 0 for α > ā which would imply that

DM’s best response at these α is to always end the game and therefore V (α) = 1 and

W (α) = WO for all α > ā.

I want to show that ā = 1. Note that ā = 1 holds if limα↗ā s(α, l) > 0: As

limα↗ā s(α, l) > 0 implies that s(α, l) > ε′ on (ā − ε, ā) for some ε, ε′ > 0 by the

assumption that s is piecewise continuous, it follows that α+ > ā for α < ā sufficiently

close to ā. Following the first preliminary observation above this requires V (α+) > 1/δ

which contradicts that V (α) = 1 for all α > ā. Note that this argument shows more

generally that α+ ≤ ā for all α ∈ A (with strict inequality if ā < 1 or α < ā).

Consequently, I only have to rule out limα↗ā s(α, l) = 0 to show that ā = 1. To

do so, I will show that DM wants to end the game for some α < ā arbitrarily close to

ā if limα↗ā s(α, l) = 0 which contradicts that s(α, l) > 0 is a best response for these

beliefs. Suppose limα↗ā s(α, l) = 0. As the equilibrium is assumed to be piecewise

continuous, s(α, l) is continuous on (ā− ε, ā) for some ε > 0. Hence, for every ε′′ > 0,

there exists an ε′ > 0 such that s(α, l) < ε′′ for α ∈ (ā − ε′, ā). Note furthermore

that limα↗ā α − α− = 0 as competent and incompetent type use (in the limit) the
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same strategy as α ↗ ā. Consequently, for every T ∈ N and every ε′ > 0, there

exists an αTε′ ∈ (ā− ε′, ā) such that, starting from belief αTε′ , the updated belief after

T consecutive recommendation that did not fit DM’s needs will still be above ā − ε′.
Starting from belief αTε′ , the updated belief of the next T periods will therefore be in

(ā− ε′, ā) as the previous paragraph established that α+ ≤ ā for all α ∈ A. Choosing ε′

such that (i) s(α, l) < ε′′ for α ∈ (ā− ε′, ā) and (ii) (ā− ε′, ā) ⊂ A yields the following

upper bound on W (αTε′) (recall that by the definition of A continuing is a best response

for all α ∈ A):

δT+1 p

1− δ
+

T∑
t=0

δt
[
(1− α)

1

2
+ α

(
p(

1

2
+ ε′′

1

2
) + (1− p)1

2

)]
.

This upper bound is strictly less than the WO by assumption (1) for ε′′ sufficiently small

and T sufficiently high. Hence, ending the game is DM’s unique best response at αTε′

for T high enough and ε′ > 0 small enough which contradicts that αTε′ ∈ A.

Lemma 6. (7) holds in every communication equilibrium.

Proof of lemma 6: By piecewise continuity of the equilibrium strategies, there exists

an ā < 1 such that V is continuous for all α ∈ (ā, 1). By lemma 5 and piecewise

continuity, ā can be chosen high enough to ensure s(α, l) > 0 for α ∈ (ā, 1). By

theorem 1, ā can be chosen high enough to also ensure min{β−(α−), β+(α+)} < 1 for

α ∈ (ā, 1). Note that firing the adviser, i.e. β−(α−) < 1 or β+(α+) < 1, is only a best

response for high α if s(α, l) < 1 (by assumption (1)). Hence, there exists an ā < 1

such that (i) 0 < s(α, l) < 1 for all α ∈ (ā, 1), (ii) V is continuous on α ∈ (ā, 1) and (iii)

β+ and β− are continuous on α ∈ (ā, 1). In the remainder of this proof, only beliefs in

α ∈ (ā, 1) are considered, i.e. (i), (ii) and (iii) are assumed to hold, and the qualifier

“for α ∈ (ā, 1)” is omitted.

As A uses a mixed strategy, he has to be indifferent between recommending either

of the two options if option l is the bonus option. That is, the indifference condition

β+(α+)V (α+)− β−(α−)V (α−) = 1/(δ(2p− 1)) holds; see lemma 3.

As A is indifferent in case option l is the bonus option (and always recommends the

bonus option if it is option h), one way to achieve his expected value V (α) is to always

recommend his bonus option. Since the bonus option fits DM’s needs with probability

1/2, this gives

V (α) = 1 + δ

(
1

2
β+(α+)V (α+) +

1

2
β−(α−)V (α−)

)
. (8)
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Using the indifference condition to eliminate β+(α+)V (α+) gives

V (α) = 1 +
1

2(2p− 1)
+ δβ−(α−)V (α−). (9)

V is continuous and bounded; e.g. bounded from above by 1/(1−δ), and bounded from

below by 0. Therefore, Ṽ ≡ limα→1 V (α) exists. Furthermore, limα→1 α
− = α because

updating stops as the belief is approaching 1. The continuity of V implies therefore that

limα→1 V (α) = limα→1 V (α−). Strategies are continuous by assumption and therefore

limα→1 β
−(α−) exists and will – with a slight abuse of notation – be denoted as β−(1).

Taking limits on both sides of (9) yields (after rearranging)

Ṽ =
4p− 1

(4p− 2)(1− δβ−(1))
.

As β−(1) is a probability and therefore in [0, 1], the previous equation yields

Ṽ ∈
[

4p− 1

4p− 2
,

4p− 1

(4p− 2)(1− δ)

]
. (10)

In equation (8), one could also use the indifference condition to eliminate β−(α−)V (α−)

(instead of β+(α+)V (α+)). This yields

V (α) = 1− 1

2(2p− 1)
+ δβ+(α+)V (α+).

Taking again limits on both sides results (after rearranging) in

Ṽ =
4p− 3

(4p− 2)(1− δβ+(1))
.

As β+(1) is a probability and therefore in [0, 1], this implies that

Ṽ ∈
[

4p− 3

4p− 2
,

4p− 3

(4p− 2)(1− δ)

]
. (11)

Taking (10) and (11) together yields the result.

Finally, note that the upper bound of the interval in (7) is higher than the lower

bound of the interval if and only if (6) holds. That is, if (6) does not hold, Ṽ cannot

both satisfy (10) and (11) at the same time and a communication equilibrium cannot

exist.

Proof of corollary 1: By (7), limα→1 ≤ (4p − 3)/((4p − 2)(1 − δ)) in every such
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equilibrium. Rearranging

4p− 3

(4p− 2)(1− δ)
<

1

2(1− δ)

yields – given that p > 1/2 – p < 1, which is true by assumption.

Proof of proposition 3: The sum of expected payoffs in a given period has to be less

than 1/2∗1+1/2∗2 as with probability 1/2 the bonus option coincides with the option

fitting DM’s needs (allowing for a maximal possible payoff of 2) and with probability

1/2 the two do not coincide which means that only one of the two players can have a

payoff of 1. Consequently, the sum of expected continuation payoffs in a given subgame

has to be less than (3/2)/(1− δ).
DM can ensure himself an expected payoff of at least 1/2 + δWO in any subgame

by stopping the game at the end of the current period without transferring any wage

payments to A. (1/2 is the payoff DM expects to receive from an incompetent type

in a given period, and by informativeness of the equilibrium, 1/2 is also the minimum

expected payoff from a competent type.) The upper bound on continuation welfare and

the lower bound on DM’s continuation payoff yield an upper bound on A’s expected

continuation payoff equal to

V̄ = (3/2)/(1− δ)− 1/2− δWO =
1− ηδ
1− δ

(12)

where η = (1− δ)WO − 1/2 and η > 0 by (1).

Now suppose – contrary to the proposition – that there exists an ᾱ < 1 such that

DM continues with probability of at least 1−ε whenever his belief is above ᾱ. As belief

updating becomes arbitrarily slow when α is close to 1, there exists an αT for every

T ∈ N such that an adviser of reputation αT (or higher) will still have a reputation

above ᾱ after T periods, i.e. even if he recommends for T consecutive times a non-

fitting option. An adviser with reputation of (at least) αT can guarantee himself a

continuation payoff of

V̂ =
T∑
t=0

(δ(1− ε))t =
1− δT+1

1− δ(1− ε)

by recommending his bonus option for the next T periods. For T sufficiently high,
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however, V̂ is above the upper bound for A’s equilibrium continuation payoffs V̄ :

1− δT+1

1− δ(1− ε)
>

1− ηδ
1− δ

⇔ 1− δ − (1− δ)δT+1 > 1− ηδ − δ(1− ε) + ηδ2(1− ε)

⇔ (1− ε)(1− ηδ) > 1− η + (1− δ)δT

⇔ (η − δT )(1− δ)
1− ηδ

> ε

which is true by assumption for sufficiently high T and, for example, ε = η(1− δ)/(2−
2ηδ) > 0. V̂ > V̄ contradicts that the supposed equilibrium exists and therefore

establishes the desired result.

Proof of proposition 4: This proof will use the upper bound V̄ on A’s continuation

payoff derived in the proof of proposition 3, see equation (12).

First, it is shown by contradiction that – starting from an arbitrary subgame – DM

stops the game with at least probability ε′ along some path of length T ′. Suppose this

was not the case. A can then guarantee himself an expected payoff of

V = 1 +
δ(1− ε′)− δT ′+1

1− δ(1− ε)

by recommending the bonus option for the next T ′ periods. (This – very conservative

– lower bound assumes a worst case where DM stops the game with probability ε′ in

each of the following T ′ periods and stops the game with probability 1 in period T ′+1.)

The contradiction emerges as V > V̄ :

1 +
δ(1− ε′)− δT ′+1

1− δ(1− ε)
>

1− ηδ
1− δ

⇔ 1− δ − (1− δ)δT ′+1 > 1− δη − δ(1− ε′) + δ2(1− ε′)η

⇔ (1− δη)(1− ε′)− (1− η) > (1− δ)δT ′

⇔ T ′ >
log
(

(1−δη)(1−ε′)−1+η
1−δ

)
log(δ)

which holds true given the values of T ′ and ε′ stated in the proposition. Hence, the

game ends with at least ε′ probability along some path of length T ′ in equilibrium

(starting from any subgame). This implies that the probability that DM continues

for mT ′ periods is at most (1 − γε′)m where γ = (1 − p)T
′

is a lower bound on the

probability of the specific path of recommendations having at least ε′ probability of

ending the game. Now take an arbitrary ε > 0 and let m ∈ N be sufficiently high such

that (1 − γε′)m ≤ ε, e.g. m = dlog(ε)/log(1 − γε′)e. Then, the probability that the

game continues for Tε or more periods is less than ε. This establishes the first result.
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The second result follows from the first result in exactly the same way in which

theorem 2 followed from lemma 4, i.e. the proof of theorem 2 applies with Tε, ε
′ and T ′

as stated in proposition 4.

Proof of proposition 5: Let

WO =
α0(p− 1/2) + 1

2(1− δ)

and α = α0/2. Consider the equilibrium strategies and value functions as in the suf-

ficiency part of the proof of proposition 2 (where V and s denote now the strategies

for each adviser). As shown there, these strategies are an equilibrium given WO. As

W (α0) = WO, WO is indeed DM’s value of resetting.
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