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Abstract

Standard insurance models predict that people with high (health) risks have high

insurance coverage. It is empirically documented that people with high income have

lower health risks and are better insured. We show that income differences between

risk types lead to a violation of single crossing in an insurance model where people

choose treatment intensity. We analyze different market structures in this setting

and show the following: If insurers have some market power, the violation of single

crossing caused by income differences can explain the empirically observed outcome.

In contrast to other papers, our results do not rely on differences in risk aversion

between types.
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1. Introduction

A well documented problem in health insurance markets with voluntary insurance like the

US is that people either have no insurance at all or are underinsured.1 Standard insurance

models–inspired by the seminal work of Rothschild and Stiglitz (1976) (RS) and Stiglitz

(1977)–predict that healthy people have less than perfect insurance or–in the extreme–no

insurance at all. However, both popular accounts like Cohn (2007) and academic work like

Schoen et al. (2008) show that people with low health status are over-represented in the

group of uninsured and underinsured.2 We develop a model to explain why sick people

end up with little or no insurance. We do this by adding two well documented empirical

observations (discussed below) to the RS model: (i) richer people tend to be healthier and

(ii) health is a normal good. Technically speaking, introducing the latter two effects can

lead to a violation of single crossing in the model.

There is another indication that the standard RS framework with single crossing does

not capture reality in the health insurance sector well. The empirical literature that is

based on RS does not unambiguously show that asymmetric information plays a role in

health insurance markets. One would expect that people have private information about

their health risks—think for example of preconditions, medical history of parents and

other family members or life style. However, some papers, like for example Cardon and

Hendel (2001) or Cutler et al. (2008), do not find evidence of asymmetric information while

others do, e.g. Bajari et al. (2005) or Munkin and Trivedi (2010). The test for asymmetric

information employed in these papers is the so called“positive correlation test,” i.e. testing

whether riskier types buy insurance contracts with higher coverage.3

We show that an insurance model with a violation of single crossing is capable of

explaining why healthy people have better insurance than people with a low health status.

In particular, the positive correlation property no longer holds if single crossing is violated.

Consequently, testing for this positive correlation can no longer be viewed as a test for

1In empirical studies, underinsurance is defined using indicators of financial risk. To illustrate, one defi-

nition of underinsurance used by Schoen et al. (2008) is “out-of-pocket medical expenses for care amounted

to 10 percent of income or more”. In our theoretical model, underinsurance refers to less than socially

optimal/efficient insurance.
2In the words of Schoen et al. (2008, pp. w303): “underinsurance rates were higher among adults with

health problems than among healthier adults”.
3“Risk” is in structural estimation papers—broadly speaking—interpreted as a parameter on which the

distribution of health shocks depends.
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asymmetric information.

Single crossing means that people with higher health risks have a higher willingness to

pay for marginally increasing coverage, e.g. reducing copayments. If this property holds

for all possible coverage levels, a given indifference curve of a high risk type can cross a

given indifference curve of a low risk type at most once. A rough intuition for why the

stylized facts above can lead to a violation of single crossing is given by the following: at full

coverage (indemnity insurance that pays for all medical costs), high risk (low health) types

will tend to spend more on treatments than low risk types. Hence, a small reduction in

coverage, leads to a bigger loss in utility for high risk types. Now consider health insurance

with low coverage where the insured faces substantial copayments. Because health is a

normal good, it is possible that the rich-healthy type spends more on treatment than

the low income, low health type. Put differently, a rich-healthy type might utilize the

insurance more conditional on falling ill. In that case, a small change in coverage can have

a bigger effect on the utility of the healthy type than of the low health agent. The healthy

type will therefore have a higher willingness to pay for a marginal increase in coverage

than the low health type. This violates single crossing.

We show the following results. In insurance models without single crossing, higher

health risks are not necessarily associated with more coverage while this prediction is

inevitable with single crossing. More specifically, we analyze in the same framework a

setting of perfect competition as well as settings with market power. If insurance companies

have market power, high risk types might have less coverage in equilibrium than low risk

types. This is not the case if the insurance market is perfectly competitive: there would

always be a profitable pooling contract in such a situation. If firms have market power,

they do not offer this pooling contract because profits from low risk types are lower in the

pooling contract. It should be noted that in equilibria in which high risk individuals have

low insurance coverage, their insurance coverage is below first best. This leads to different

policy implications than suggested by the literature on advantageous selection; see section

5.

The starting point for our paper is the positive correlation property which is established

in various forms in the theoretical literature. The most general treatment is Chiappori et al.

(2006). Their main focus is a positive correlation between coverage and expenditure claims

while we are interested in the correlation between patient risk and coverage. Although

Chiappori et al. (2006, pp. 787) note that they do not assume single crossing, our model
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is not a special case of their framework. In particular, in their model higher risk types

have higher expenditure claims (in expectation). This is not necessarily the case in our

model because of the utilization effect analyzed in our paper. Put differently, we analyze

a situation where the agent has a treatment choice after the risk realizes while Chiappori

et al. (2006) analyze a model where the agent can take an action that influences the risk

distribution before the risk realizes.

The literature on violations of single crossing is relatively scarce and has so far not dealt

with ex post decisions, e.g. treatment decisions made after the risk realizes. There are

three papers analyzing perfectly competitive insurance markets with 2 × 2 types: people

differ in two dimensions and both dimensions can either take a high or a low value. In

Smart (2000) and Wambach (2000), the two dimensions are risk and risk aversion. Netzer

and Scheuer (2010) model an additional labor supply decision and the two dimensions are

productivity and risk. All papers have a pooling result, i.e. if single crossing does not

hold two of the four types can be pooled. Only in Netzer and Scheuer (2010) there can

be equilibria where some low risk types have more coverage than some high risk types.

However, the wealthiest types have the lowest coverage in their model. This contrasts

with the empirical observation in the health insurance sector mentioned above. In Smart

(2000) and Wambach (2000), the high risk/high risk aversion type receives full coverage

and the (low, low) type gets partial coverage. The (high, low) and (low, high) type can

be pooled on an intermediate coverage level. Although two types with different risks are

pooled, the positive correlation property still holds (weakly) in those models. The pooling

itself is a result of the fact that some high risk types are less risk averse than some low risk

types. Given that high risk types are likely to be poor in the health insurance context,

even this pooling result appears unlikely to apply in the health insurance sector.

Jullien et al. (2007) take a different approach to answer the question why high risk

types might have lower coverage in insurance markets. They use a model where types differ

in risk aversion and single crossing is satisfied. Hence, types with higher risk aversion will

have more coverage in equilibrium. At the same time, more risk averse agents might engage

more in preventive behavior. If types are still separated in equilibrium and risk aversion

differences remain the driving force, high risk aversion types will exhibit less risk (due to

prevention) and higher coverage. Similar explanations for “advantageous selection” as in

Jullien et al. (2007) can be found in Hemenway (1990) and De Meza and Webb (2001).

While differences in risk aversion can explain the observed outcome of some insurance
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markets, e.g. Jullien et al. (2007) mention car insurance, this explanation does not easily

fit the stylized facts of the health insurance market. We come back to this in section 5.

Since risk in the health sector is exogenously different for different persons, e.g. due

to genetics, we follow RS and take a different starting point than Jullien et al. (2007). We

assume risk differences instead of risk aversion differences. The result that high risk people

have low coverage is in our paper not the result of low risk aversion. The driving force

is the violation of single crossing caused by empirically documented income differences

between high risks and low risks; see section 2. This is also in line with empirical evidence

in Fang et al. (2008) who show that income is a source of advantageous selection in the

medigap insurance market.

In the following section, we explain by use of a small model why consumers’ preferences

for health insurance violate single crossing. Section 3 introduces a general insurance model

in which equilibria under perfect competition, monopoly and oligopoly are derived. In

section 4, we illustrate the setup and the results with two numerical examples. Section 5

relates our results to the advantageous selection literature and section 6 concludes. Proofs

are relegated to the appendix.

2. Income and health

We present a model where SC is violated because income affects treatment choices and

differs between types. Unlike previous papers, e.g. Wambach (2000), De Meza and Webb

(2001) and in some sense also in Netzer and Scheuer (2010), we do not assume that risk

aversion depends on income or wealth. We do not see differences in risk aversion as a

natural explanation for under-insurance problems in health care; see section 5.

The idea of our model is that partial coverage contracts require people to finance a

part of the costs of treatment out of their own pocket. In this case, low income agents

may decide to choose cheaper treatment or forgo treatment altogether. This effect is

documented in the medical literature, see for example Piette et al. (2004b), Piette et al.

(2004a) or Goldman et al. (2007). Put differently, the fact that health is a normal good

can lead to a violation of single crossing. The reason is that poor, high risk types do not

utilize the insurance fully when copayments are substantial. Therefore, their willingness

to pay for a marginal increase in coverage can be lower than the one of rich, low risk types

who utilize the insurance fully.

5



This utilization effect is well established in the medical literature. By extrapolating

from their sample to the US population Piette et al. (2004a, p. 1786) conclude that “2.9

million of the 14.1 million American adults with asthma (20%) may be cutting back on

their asthma medication because of cost pressures.” They also document for a number of

chronical conditions that people from low income groups are much more likely to report

foregoing prescribed treatment due to costs.4 Further examples can, for instance, be

found in Piette et al. (2004b), Goldman et al. (2007), Schoen et al. (2010) or Schoen et al.

(2008, pp. w305) who report that “[b]ased on a composite access indicator that included

going without at least one of four needed medical care services, more than half of the

underinsured and two-thirds of the uninsured reported cost-related access problems”.

The utilization effect leads to a violation of single crossing if richer people face lower

health risks, i.e. income and health risk are negatively correlated. This is also well docu-

mented in the empirical health literature, see for example Frijters et al. (2005), Finkelstein

and McGarry (2006), Gravelle and Sutton (2009) or Munkin and Trivedi (2010). Potential

explanations for this correlation between income and health include the following. High

income people are better educated and hence know the importance of healthy food, exer-

cise etc. Healthy food options tend to be more expensive and therefore better affordable

to high income people. Or (with causality running in the other direction) healthy people

are more productive and therefore earn higher incomes.

To illustrate how the described features of the health sector can lead to a violation of

single crossing and also to give an example for models encompassed by the general model

of section 3, we present a simple model of health insurance demand. We assume that

consumers have one of two risk types θ ∈ {θh, θl} and that the risk type of a consumer is

his private information. A type θ consumer faces a health shock s ∈ [0, 1] with distribution

(density) function F (s|θ)(f(s|θ)). We take s = 1 as the state in which the agent is

healthy and needs no treatment. Lower health states s correspond to worse health. The

assumption that the θh type has a higher health risk than the θl type can now be stated

as F (s|θh) > F (s|θl) for each s ∈ 〈0, 1〉. In words, low health states s are more likely for

the θh type than for the θl type.

A consumer can buy a health insurance contract. Insurance contracts consist of an

4For most chronic diseases people with income less than $ 20000 are roughly 2 (5) times more likely to

forgo prescribed treatment due to costs than people with an income between $ 20000 and $ 40000 (more

than $ 60000); see table 3 in Piette et al. (2004a) for details.
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insurance premium p and coverage q. The most straightforward interpretation is that the

consumer has a copayment rate of 1− q but it will become clear that the same effects as

below are also present in contracts with deductibles.

Once an agent receives a health shock s < 1, she can increase her health by tretament

τ ∈ [0, 1− s]. That is, any treatment between no treatment and full recovery is available.

Low income consumers with partial coverage, i.e. q < 1, may decide to choose cheaper

treatment than if they had full insurance.5

Let w(θ) denote the wealth (or income) of a type θ agent. The agent maximizes

expected utility

u(q, p, θ) =

∫ 1

0
{v(w(θ)− p− (1− q)τ(s, q, θ), s+ τ(s, q, θ))}dF (s|θ)

where τ(s, q, θ) is defined as:

τ(s, q, θ) = arg max
τ∈[0,1−s]

v(w(θ)− p− (1− q)τ, s+ τ)

(1)

where v(y, x) is the utility function of an agent which depends on consumption of other

goods (y) and health (x). Denoting partial derivatives by subscripts, we assume that

v(y, x) satisfies vy, vx > 0, vyy, vxx < 0 and that health is a normal good: vxy ≥ 0. That

is, utility increases in both health and consumption of other goods at a decreasing rate.

As income increases, people’s preference for health increases as well. In line with the

empirical literature cited above, we assume that income and health status θ are negatively

correlated: w(θh) ≤ w(θl).

The first order condition for an interior solution τ(s, q, θ) ∈ [0, 1 − s] can be written

as6

vx(w(θ)−p−(1−q)τ(s, q, θ), s+τ(s, q, θ)) = (1−q)vy(w(θ)−p−(1−q)τ(s, q, θ), s+τ(s, q, θ)).

(2)

To see the implications of this model for single crossing, consider the slope of the indiffer-

ence curves in (q, p)-space:

pq(q, u, θ) = −uq
up

=

∫ 1
0 vy(w(θ)− p− (1− q)τ(s, q, θ), s+ τ(s, q, θ))τ(s, q, θ)dF (s|θ)∫ 1

0 vy(w(θ)− p− (1− q)τ(s, q, θ), s+ τ(s, q, θ))dF (s|θ)
(3)

5Implicitly, we assume that contracts cannot be contingent on treatment choice. Given the problems of

verifiability of treatment and quantity choice as well as the possibility of doctor and patient to “collude”

against the insurance (see Ma and McGuire (1997) for an analysis of these problems), this seems not

unreasonable.
6If the left hand side of (2) is higher (lower) than the right hand side for all τ , the boundary solution

τ = 1 − s (τ = 0) results.
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In words, the slope pq equals the weighted average of treatment τ(s, q, θ) over the states s

with weight
vy(w(θ)− p− (1− q)τ(s, q, θ), s+ τ(s, q, θ))f(s|θ)∫ 1

0 vy(w(θ)− p− (1− q)τ(s, q, θ), s+ τ(s, q, θ))dF (s|θ)
(4)

on state s (where the weights integrate to 1).

We will now show in two steps how single crossing can be violated in this model.

Single crossing means that one type’s indifference curves are steeper than the other type’s

indifference curves at any contract (q, p). First, we will show that at full coverage, i.e.

at q = 1, the high risk type has the steeper indifference curve. In a second step, it is

shown that the low risk type can have the steeper indifference curve at low coverage levels.

Hence, single crossing does not hold. Along the way, we show that wealth differences

causing different utilization in case of falling ill are the reason for the violation of single

crossing, i.e. single crossing will be satisfied if both types have the same wealth.

As the optimal treatment in the case of full coverage is clearly τ = 1− s (irrespective

of type), it is easy to calculate pq at full coverage:

pq(1, u, θ) =

∫ 1
0 vy(w(θ)− p, 1)(1− s)dF (s|θ)∫ 1

0 vy(w(θ)− p, 1)dF (s|θ)
=

∫ 1

0
(1− s)dF (s|θ)

where the last equality follows from the fact that vy(w(θ) − p, 1) is constant in s. The

stochastic dominance assumption implies that θh puts more weight on low s states (where

1− s is high) compared to θl. Hence, under these assumptions, the high risk type has the

steeper indifference curve at full coverage.

Single crossing is satisfied if there are no wealth differences between types, i.e. w(θh) =

w(θl). The idea is that without wealth differences (2) yields the same optimal treatment for

both types. Put differently, τ(s, q, θ) is independent of θ. If patients choose more treatment

in worse health states, single crossing will be satisfied: due to stochastic dominance, θh

types have higher weight (4) on low health states. In these low health states, treatment

τ(s) is high. This follows from equation (2) which—using the implicit function theorem—

implies

(−(1− q)2vyy + 2(1− q)vyx − vxx)
dτ

ds
= vxx − (1− q)vyx. (5)

The assumptions on v imply that dτ/ds ≥ 0. Clearly, this weak inequality also holds at

boundary solutions. Because high risks place a higher weight on states in which treatment

is high, pq in (3) is higher for θh than for θl types for all q ∈ [0, 1] in case of equal wealth.

If high risk types have lower incomes, they will choose a lower treatment than low risk

8



types at partial coverage contracts. This follows from equation (2), since

dτ

dw
=

−(1− q)vyy + vxy
−(1− q)2vyy + 2(1− q)vyx − vxx

> 0. (6)

Hence, if τ(s, q, θl) ∈ [0, 1− s] is an interior maximum, the θh type tends to choose lower

treatment τ . In words, since a fraction 1− q of the treatment cost has to be paid by the

insured, a low income θh patient may choose cheaper treatment than the richer θl type (as

health is a normal good). Since she does not utilize the insurance as much as the (rich)

low risk type, type θh has a lower marginal willingness to pay for insurance coverage at low

coverage levels. However, for high levels of coverage, i.e. q close to 1, wealth differences

matter less in the treatment choice because the patient does not have to pay (much) out

of pocket for the treatment. Consequently, single crossing can be violated.

This model—where agents differ in income and treatment choice is endogenous—can

generate the violation of single crossing mentioned above. In the following section, we will

analyze a general model that allows for violations of single crossing.

3. Insurance model

This section introduces a general model of (health) insurance that allows us to consider

both the case where single crossing (SC) is satisfied and the case where it is not satis-

fied (NSC). After describing the demand side of the insurance market, we consider three

alternatives for the supply side: perfect competition, monopoly and oligopoly.

3.1. Demand side model

Following RS, we consider an agent with utility function u(q, p, θ) where q ∈ [0, 1] denotes

coverage or generosity of her insurance contract,7 p ≥ 0 denotes the insurance premium

and θ ∈ {θl, θh} with θh > θl > 0 denotes the type of consumer.8 Higher θ denotes a

higher risk in the sense of higher expected costs in case qh = ql = 1; see below. This could,

for instance, be the case due to chronic illness or higher risk due to a genetic precondition.

We make the following assumptions on the utility function.

7Apart from literal coverage—where 1 − q denotes the agent’s copayments—q could, for example, be

interpreted as 1/(1 + deductible). Note that in models without moral hazard both parameters are similar

in the sense that people with high expected expenditure are affected by co-payments and deductibles more

relative to people with low expected expenditure.
8We follow RS in assuming that there are only two types. For an analysis of a violation of single crossing

with a continuum of types θ, see Araujo and Moreira (2003, 2010) and Schottmüller (2011).
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Assumption 1 The utility function u(q, p, θ) is continuous and differentiable. It satisfies

uq > 0, up < 0. We define the indifference curve p(q, u, θ) as follows:

u(q, p(q, u, θ), θ) ≡ u (7)

We assume that these indifference curves p(q, u, θ) are differentiable in q and u with pq =

−uq/up > 0, pu = 1/up < 0.

Further, the crossing at q = 1 satisfies:

pq(1, u
h, θh) > pq(1, u

l, θl) (C1)

for all ul ≥ ūl = u(0, 0, θl), uh ≥ ūh = u(0, 0, θh).

In words, utility u is increasing in coverage q and decreasing in the premium p paid for

insurance. For given type θ and utility level u, the indifference curve p(q, u, θ) maps out

combinations (q, p) that yield the same utility. Because higher coverage leads to higher

utility, p has to increase to keep utility constant. Hence, indifference curves are upward

sloping in (q, p) space (pq > 0). Increasing u—for a given coverage level q—requires a

lower price. Thus, raising u shifts an indifference curve downwards (pu < 0).

Type k ∈ {h, l} buys insurance if it leads to a higher utility than her outside option

ūk. This outside option is given by the “empty insurance contract”: q = p = 0.

At full coverage (q = 1), a marginal reduction in coverage q should be compensated by

a bigger decrease in the premium p for θh compared to θl. This reflects the fact that the

θh type faces higher expected health care expenditures, i.e. she is the high risk type. At

full coverage, other factors that could differ by types like willingness to pay for treatment

do not play a role. In this sense, this assumption “defines” what higher θ means: at full

coverage, higher θ types face higher expected costs. With the same idea we assume that

expected costs for the insurer of a contract with q = 1 is higher for the θh than for the

θl type: c(1, uh, θh) > c(1, ul, θl) for all uh ≥ ūh, ul ≥ ūl. Intuitively, u should not matter

for health care consumption at full coverage and the high risk type will use the insurance

more.

To allow for income effects, for instance in treatment choice, the cost function depends

on u. However, we assume two regularity conditions.

Assumption 2 For each type k ∈ {h, l} and q ∈ [0, 1], we assume that

• cu(q, uk, θk) ≥ 0 for uk ≥ ūk,
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• c(1, uk, θk) = c(1, ũk, θk), for uk, ũk ≥ ūk.

In words, as the income of the agent increases (which ceteris paribus leads to higher

utility), the agent has more money to spend on treatment. As the insurer pays a fraction

q ≥ 0 of these treatments, this leads to (weakly) higher costs for the insurer. Second,

costs at full coverage (q = 1) do not vary in utility. Intuitively, if q = 1 treatments are for

free for the agent and there is no reason to forgo treatments, irrespective of the level of

uk ≥ ūk.

Because of (C1), the single crossing condition (also called sorting, constant sign or

Spence-Mirrlees condition) reads

pq(q, u
h, θh) > pq(q, u

l, θl) > 0 (SC)

q ∈ [0, 1] and uh ≥ ūh, ul ≥ ūl such that p(q, uh, θh) = p(q, ul, θl). The intuition is the

following. Suppose an indifference curve of type θh intersects with an indifference curve of

type θl in some point (p, q). Then (SC) implies that the slope of the θh indifference curve

will be higher. It follows that these two indifference curves can intersect only once.

We consider both the case where (SC) is satisfied and the case where it is violated

(NSC). In both the SC and NSC cases, we maintain the assumption that q = 1 is the

efficient insurance level (EI) for each type θ ∈ {θl, θh}. Hence, we do not consider the case

where insurance leads to inefficiency by inducing over-consumption of treatments.

Assumption 3 For a given utility level uk, welfare (and therefore profits) are maximized

at full coverage, i.e.

max
q∈[0,1]

p(q, uk, θk)− c(q, uk, θk) (EI)

is uniquely maximized by q = 1 for each k ∈ {h, l} and uk ≥ ūk.

This basically means that the insurance motive, i.e. transferring risk from a risk averse

agent to a risk neutral insurer, is not overruled by other considerations. To illustrate, we

do not assume that the low income agent’s preference for health/treatment is so low that

foregoing insurance would be socially optimal. Put differently, we assume that full insur-

ance is socially desirable. Underinsurance—with no insurance as extreme case—results

therefore not from first best but from informational distortions and price discrimination

motives.

Our motivation for making this assumption is twofold. First, this assumption simply

normalizes the socially efficient insurance level in the same way as in RS. Hence, we only
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deviate from the RS set up by allowing for both SC and NSC. Second, we want to argue

that under realistic assumptions, θh types have less than full insurance. If the first best

insurance level is actually below one, then this result would follow rather trivially. Another

way of putting this is to say that a θh type would buy full insurance if she chose from all

actuarially fair insurance contracts. In this sense, the answer to our question “why healthy

people have high coverage” is not simply that unhealthy people cannot afford actuarially

fair insurance. The result that qh < 1 is not directly driven by utility and cost functions.

As mentioned before, we are interested in adverse selection issues, not moral hazard. It

should also be noted that—unlike Jullien et al. (2007)—we do not model prevention. In

our framework, consumers make a treatment decision after falling ill. Prevention efforts

are taken ex ante (before falling ill) and may be negatively affected by generous coverage

(q = 1). In a model where q = 1 leads either to excessive health care consumption or to

under-investment in prevention efforts, it is almost trivial to show that qh < 1 is optimal.9

In our model, types are separated because the θh type prefers the cheap low coverage

insurance above the expensive generous insurance contract.

To illustrate that the assumptions encompass not only models with endogenous treat-

ment choice as in section 2 but also standard models of the insurance literature, we show

that the RS setup satisfies all of our assumptions.

Example 1 In the RS setup, an agent faces with probability θ a monetary loss D. She has

initial wealth w and expected utility u(q, p, θ) = θv(w−(1−q)D−p)+(1−θ)v(w−p) where

v′ > 0 and v′′ < 0. Using the implicit function theorem, pq(1, u, θ) = θD and therefore

(C1) is satisfied. Note that (C1) will also be satisfied if w depends on θ. The insurer is

risk neutral and has profits p−θqD. As profits do not depend on u (or w), assumption 2 is

trivially satisfied. Since the agent is risk averse and the insurer is risk neutral, assumption

3 is also satisfied.

9As shown in propositions 2 and 3, we get qh < ql in case the l-type is willing to pay more than the h-

type for efficient coverage. If due to either moral hazard or prevention, first best coverage satisfies q∗ < 1,

it becomes easier to get qh < ql. Indeed, because of assumption (C1), at q close to 1 the indifference

curve for the h-type is steeper than for the l-type. As health is a normal good, this is the case to a lesser

extent (or not at all) at q∗ < 1. Hence it is easier to satisfy p(q∗, ul, θl) > p(q∗, uh, θh) than it is to get

p(1, ul, θl) > p(1, uh, θh).
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Figure 1: incentive compatibility constraints

3.2. Supply side

An insurer offers a menu of two contracts; one contract for each type. The contract of type

θk consists of a coverage level qk and a price pk resulting in utility level uk = u(qk, pk, θk).

The two contracts can be identical (pooling) or differ from each other (separating). In case

of separating, the contracts have to satisfy the incentive compatibility (IC) constraints for

each type:

p(ql, ul, θl) ≥ p(ql, uh, θh) (ICh)

p(qh, uh, θh) ≥ p(qh, ul, θl) (ICl)

where uk is the utility level of type θk when buying the contract (qk, pk). The

first constraint implies that the contract intended for θh (i.e. (qh, p(qh, uh, θh))) lies on

a (weakly) lower indifference curve for θh than the contract that is meant for the θl

type (ql, p(ql, ul, θl)). That is, the inequality implies u(qh, ph, θh) ≥ u(ql, pl, θh) where

pi = p(qi, ui, θi) with i ∈ {h, l}. This is illustrated in figure 1 where the inequality is

binding: both contracts lie on the θh indifference curve (dashed line). Similarly, the sec-

ond inequality implies that u(ql, pl, θl) ≥ u(qh, ph, θl). In figure 1, (ICl) is satisfied with

inequality: The θl indifference curve through the (ql, pl) contract is below ph at qh.

Irrespective of the mode of competition and whether (SC) holds, we have the following

result for the models that we use below where profit maximizing insurers offer contracts

simultaneously and independently.

Lemma 1 At least one type has full coverage. If the types are separated under the optimal

contract scheme (ql, pl), (qh, ph) with ql 6= qh, then at most one incentive constraint binds.

13



3.2.1. Perfect competition

The literature on insurance models considers mostly perfect competition.10 We show that

perfect competition implies qh = 1 even if (SC) is not satisfied. Hence, in our model,

market power on the insurance side is needed to obtain equilibria with qh < 1.

Following the RS definition of the perfect competition equilibrium, we require that (i)

each offered contract makes non-negative profits and (ii) given the equilibrium contracts

there is no other contract yielding positive profits.

Proposition 1 In a perfectly competitive insurance market, the high risk type buys a full

coverage contract, i.e. qh = 1, in equilibrium.

The proposition shows that even with violations of single crossing, high risk types will

obtain (weakly) higher coverage than low risk types in the RS equilibrium.

However, as is well known, existence of equilibrium is not guaranteed in the RS frame-

work. When the only separating equilibrium is broken by a pooling contract, a RS equi-

librium does not exist. Wilson (1977) (see also Miyazaki (1977), Spence (1978) and Netzer

and Scheuer (2011)) offers a slightly different model of perfect competition in an insurance

market where equilibrium always exists. The main difference between RS and Wilson

(1977) is that Wilson uses an equilibrium notion where every firm expects that all con-

tracts that become unprofitable due to the firm’s offered contracts will be withdrawn

immediately. Netzer and Scheuer (2011) specify an extensive form game that generates

this equilibrium as a subgame perfect equilibrium that is robust to the introduction ε > 0

withdrawal costs. We denote these contracts “MW contracts”.

As shown by Miyazaki (1977) and Netzer and Scheuer (2011), MW contracts are—

adapted to our notation—the solution to the following optimization problem:11

max
ph,qh,pl,ql

u(ql, pl, θl) (PMW )

10See Jack (2006) and Olivella and Vera-Hernández (2007) for exceptions using a Hotelling model to

formalize market power on the insurer side of the market. These papers assume that (SC) is satisfied and

hence find efficient insurance for the θh type.
11Note that lemma 1 does not apply here, as firms do not make their contract offers simultaneously and

independently.
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subject to the constraints

pl ≥ p(ql, u(qh, ph, θh), θh) (8)

ph ≥ p(qh, u(ql, pl, θl), θl) (9)

φ(ph − c(qh, u(qh, ph, θh), θh)) + (1− φ)(pl − c(ql, u(ql, pl, θl), θl)) ≥ 0 (10)

ph ≤ c(qh, u(qh, ph, θh), θh) (11)

qi ∈ [0, 1], pi ∈ [0, wi] for i = h, l (12)

where φ is the share of θh types in the population. The first two constraints are incen-

tive compatibility constraints. Constraint (10) is a non-negative profits constraint (in

expectation). Cross-subsidization from θh to θl types is prohibited by (11).

Netzer and Scheuer (2011) derive a number of properties of optimization problem

(PMW ). For us the relevant properties are: (i) this optimization problem always has a

unique solution, (ii) this solution is a Wilson equilibrium and (iii) if constraint (11) binds,

the solution coincides with the RS contracts. In this sense, the MW contracts generalize

the RS equilibrium. If the RS equilibrium does not exist, the MW contracts include a

cross subsidization from the low risk to the high risk type. As our setup is not exactly

the same as in Netzer and Scheuer (2011), we prove these results for our setup in the

webappendix.12

The question is: does this characterization of the “perfect competition” outcome allow

for qh < 1? The answer is no.

Lemma 2 In any MW contract, qh = 1.

Hence, we need to deviate from perfect competition (either in the RS or the MW sense)

to get qh < ql. Put differently, the positive correlation property holds in these models of

perfect competition irrespectively of single crossing. To explain violations of the positive

correlation property which are pointed out in the empirical literature, it is necessary to

deviate from the perfect competition assumption.

Indeed, recent research for the US, see Dafny (2010), shows that health insurers have

market power. More generally, in most countries where health insurance is provided by pri-

vate companies, these firms tend to be big due to economies of scale in risk diversification.

Hence, one would expect that these firms have some market power.

12 see http://sites.google.com/site/janboonehomepage/home/webappendices
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3.2.2. Monopoly

Consider an insurance monopolist. In this case, the positive correlation property can be

violated in the (NSC) case.

Proposition 2 The type with the highest willingness to pay for full coverage, i.e. the type

θk with highest p(1, ūk, θk), obtains a full coverage contract in an insurance monopoly.

Either her incentive compatibility or her individual rationality constraint is binding (or

both). The other type’s individual rationality constraint is binding.

Let θk denote the type with the highest willingness to pay for full coverage. It follows

from the proposition that θk obtains a contract (q, p) = (1, pk) for some pk ≤ p(1, ūk, θk).

The monopoly outcome is now pinned down by the choice of pk. If pk = p(1, ūk, θk),

then both individual rationality constraints are binding. In this case, type θ−k might be

excluded, i.e. θ−k gets the contract (0, 0). If pk = p(1, ū−k, θ−k), both types are pooled.

If pk ∈ 〈p(1, ū−k, θ−k), p(1, ūk, θk)〉, the equilibrium separates the types and θ−k gets an

insurance contract with partial coverage. The optimal pk depends on the share of θk types

in the population.

A direct implication of proposition 2 is that high risk types will always have full cover-

age if single crossing is satisfied. To see this, note that the indifference curve corresponding

to ūk (that is the individual rationality constraint) goes through the origin (p, q) = (0, 0)

for both types. With (SC) the indifference curve of the high risk type is steeper and lies

therefore above the individual rationality constraint of the low risk type for all coverage

levels.

Without single crossing this is no longer the case. We will give a numerical example

below where the low risk type θl has the higher willingness to pay for full coverage. There-

fore, the low risk type will receive full coverage. If the types are separated, which depends

on the share of each type in the population, we find that qh < ql = 1. Put differently, the

positive correlation property no longer holds in the monopoly setup.

The intuition for why market power is needed for qh < 1 is the following. Under perfect

competition, any candidate equilibrium where qh < 1 allows a profitable deviation. An

insurer who deviates by offering q̂h = 1 and the corresponding price (p(1, uh, θh)) on the θh

type’s indifference curve makes a positive profit on the θh type because of assumption 3. If

θl types decide to buy this deviation contract as well, the insurer will make positive profits

on these types as well because c(1, ul, θl) < c(1, uh, θh). Hence, a perfect competition
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outcome with qh < 1 is destroyed by such a profitable deviation.

For a monopolist, the situation is different. Again starting from qh < 1 and considering

a deviation to q̂h = 1, attracting θl types on the deviating contract is bad news if this

reduces the profits the monopolist makes on the θl contract. If the loss on the θl types

exceeds the gain on the θh type (due to assumption 3), qh < 1 is an equilibrium outcome

for the monopolist.

Of course, a monopolistic market structure is an extreme case and not entirely realistic

in the health insurance market. However, the idea that the positive correlation property

does not hold in the (NSC) case is more general. To illustrate this, we turn to an oligopoly

setting next.

3.2.3. Oligopoly

This subsection uses a tractable duopoly model on the supply side. It serves as an illustra-

tion that the results from the monopoly setting also carry over to imperfect competition

settings.

We assume that there are two profit maximizing insurers located at the end points 0 and

1 of a Hotelling line. Agents of both types are uniformly distributed over the [0, 1] interval.

The share of high risk types in the population is denoted by φ which is assumed to be

independent from location x ∈ [0, 1]. An agent at position x ∈ [0, 1] incurs transportation

cost xt ((1 − x)t) when buying from insurer a (b) with t > 0. The agent maximizes the

expected utility from the insurance contract minus the transportation costs. Each insurer

offers a menu of contracts {(qh, ph), (ql, pl), (0, 0)} where the first contract is intended for

the θh type, the second for the θl type and the third “contract” denotes the agent’s outside

option of not buying insurance at all (which will not be used in equilibrium).13 Insurers

simultaneously offer menus and consumers choose their preferred contract afterwards.

For the following result, we need the fairly standard assumption upp ≤ 0, i.e. the higher

the price the higher is the utility loss from a marginal price increase. Put differently, there

is a decreasing marginal utility from other goods.

Proposition 3 Assume upp(1, p, θ
l) ≤ 0 for p ∈ (0, p(1, ūl, θl)). If p(1, ūl, θl) > p(1, ūh, θh),

then there exist parameter values φ > 0 and t > 0 such that type θl obtains a full coverage

13This means that “transportation costs” are not relevant for the participation decision. This ensures

that firms compete also for high values of t. Hence, we rule out the case of (local) monopoly which was

analyzed above.
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contract in a separating equilibrium.

This proposition is similar to the result obtained for the monopoly setup. If the low risk

type has a higher willingness to pay for full coverage, there are separating equilibria where

he obtains full coverage. As noted above, since p(0, ūl, θl) = p(0, ūh, θh), (SC) implies that

p(1, ūl, θl) < p(1, ūh, θh). But with a violation of single crossing it can indeed be the case

that p(1, ūl, θl) > p(1, ūh, θh). This is illustrated with two numerical examples in section

4.

4. Examples

In this section, we give two numerical examples in which our assumptions are satisfied, the

violation of single crossing occurs and qh < ql = 1 can happen in monopoly and duopoly.14

Example 2 Consider the following mean-variance utility set up. There are two states of

the world: an agent either falls ill or stays healthy. The probability of falling ill is denoted

by F h (F l < F h) for type θh (θl). We choose F h = 0.07 > 0.05 = F l. Once an agent falls

ill, the set of possible treatments is denoted by Γ = {τ , τ̄}. The utility of an agent of type

i = h, l with treatment choice τ ∈ {τ , τ̄} is written as:

u(q, p, θi) = F i(v(τ, θi)− (1− q)τ) + (1− F i)v(1, θi)− p

−1
2r
iF i(1− F i)(v(1, θi)− v(τ, θi) + (1− q)τ)2

(13)

where v(τ, θi) denotes the utility for type i = h, l of having health τ and ri > 0 denotes the

degree of risk aversion. Hence an agent’s utility is given by the expected utility minus 1
2r
i

times the variance in the agent’s utility. This is a simple way to capture that the agent is

risk averse.15

Along an indifference curve where u is fixed, we find the following slope:

dp

dq
= F iτ(q, θi) + riF i(1− F i)(v(1, θi)− v(τ(q, θi), θi) + (1− q)τ(q, θi))τ(q, θi) (14)

14For the Python code used to generate the examples, see:

http://sites.google.com/site/janboonehomepage/home/webappendices. This webappendix also veri-

fies that (EI) is satisfied for these two examples.
15When an agent of type i buys a product at price p that gives utility v, there are two ways to capture

the marginal utility of income for agent i. First, overall utility can be written as v − αip where v is the

same for each type i and αi can differ. Low income types are then modeled to have high αi; high marginal

utility of income. Alternatively, one can write vi − αp where α is the same for all types. Then low income

types have low vi. We have chosen the latter formalization with α = 1. The assumption that treatment is
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where τ(q, θi) is the solution for τ solving

max
τ∈{τ ,τ̄}

v(τ, θi)− (1− q)τ.

In words, once an agent falls ill, she decides which treatment to choose based on the benefit

v(τ, θi) and the out-of-pocket expenses (1− q)τ .

We assume τ̄ = 0.6, τ = 0.2 and the associated utilities for the θh type equal v(1, θh) =

0.9, v(τ̄ , θh) = 0.7, v(τ , θh) = 0.45 and similarly for the θl type: v(1, θl) = 1.1, v(τ̄ , θl) =

0.9, v(τ , θl) = 0.5. Hence, having high health is more important for the θl type compared

to the θh type. We set rh = 1.1, rl = 1.5 which implies that

rhF h(1− F h)(v(1, θh)− v(τ̄ , θh))τ̄ = rlF l(1− F l)(v(1, θl)− v(τ̄ , θl))τ̄ . (15)

In words, at q = 1 (where both types choose the highest treatment τ̄) the variance terms in

the slope dp/dq (equation (14)) are equalized. Hence, assumption (C1) is satisfied because

F hτ̄ > F lτ̄ in equation (14).16

Figure 2 shows two indifference curves for the θl type (in red) and one for the θh type

(in blue). It is clear that (SC) is violated. Indeed, there is q̃ such that for q < q̃ the

indifference curve for the θl type is steeper than for the θh type. This is due to the fact

that the θl type buys the expensive treatment τ̄ while the θh type buys τ . The kink in the

indifference curve for the θh type happens at the value q̃ where the θh type switches from

the cheap to the more expensive treatment. Hence, small increases in q for q > q̃ are worth

more to the θh type than small increases in q < q̃. In fact, the figure shows that for q > q̃,

the indifference curve for the θh type is steeper than the one for the θl type. This is the

violation in single crossing.

In a simple mean-variance utility framework, it is therefore straightforward and intu-

itive to generate a violation of (SC).

The l-type has a higher willingness to pay for full coverage compared to the h-type.

This can be seen in figure 2: the solid lines are the indifference curves of both types that go

a normal good is then implemented by assuming that

v(τ̄ , θh) − v(τ , θh) < v(τ̄ , θl) − v(τ , θl).

16Note also that the numerical values below are chosen such that the variance term in the utility function

is also equal at full coverage (and weakly higher for θh if q < 1). Therefore, the violation of single crossing

in our example is due to the different utilization of health insurance and not to differences in risk aversion

that were the driving force in other papers on the violation of single crossing.
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Figure 2: Indifference curves with parameter values in example 2 and t = 0.018

through the empty contract (0, 0), i.e. the indifference curves corresponding to individual

rationality. Willingness to pay for full coverage is given by the value at q = 1 where the

low risk type’s indifference curve is above the high risk type’s indifference curve.

For this example, proposition 1 and lemma 2 imply that with perfect competition (in

the RS or MW sense) we find that qh = 1 in equilibrium. However, proposition 2 implies

that in a monopoly framework ql = 1. If the share of low risk type’s is high enough, the

optimal monopoly menu separates the two types and the positive correlation property will

be violated.

Finally, we use the example to illustrate the logic behind proposition 3. We will show

that it is straightforward to find examples where ql = 1 and qh < 1 in duopoly. The

easiest way to do this is to find parameter values such that the individual rationality (IR)

curve (that is, the indifference curve p(q, ū, θ)) for the θl type lies everywhere above the

IR curve for the θh type. As shown in figure 2, this is the case for the parameter values

of our numerical example. Clearly, the Hotelling equilibrium contracts have to lie on or

below the relevant IR curves.

First, assume that φ = 0. In words, there are only θl types. Then it is routine

to verify that ql = 1 (because of assumption 3) and the Hotelling equilibrium price on
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the θl-market equals pl = F lτ̄ + t.17 This contract is denoted (1, pl) in figure 2 for the

parameter values given above and t = 0.018. As this contract lies below θl’s IR curve, it

is, indeed, the equilibrium outcome. Let ulhotel. denote θl’s utility level associated with the

(1, pl) contract: ulhotel. = u(1, pl, θl). Contract (qh, ph) (although not bought by anyone as

φ = 0) is defined by the intersection of indifference curve p(q, ulhotel., θ
l) (dashed curve in

the figure) and θh’s IR curve. This is the best contract on θh’s IR curve that satisfies θl’s

incentive compatibility constraint.

Now increase φ slightly to φ > 0 (but small). We claim that this results in an equilib-

rium with ql = 1 > qh. For this to be an equilibrium, we need that the indifference curve

for the θl type at q = 1 lies above the indifference curve for the θh type at q = 1. Note

that the equilibrium indifference curve for the θh type (p(q, uhhotel, θ
h)) cannot lie above

θh’s IR curve. Hence, a sufficient condition for an equilibrium with ql = 1 > qh is that θl’s

indifference curve p(q, ulhotel., θ
l) at the new Hotelling equilibrium lies above θh’s IR curve

at q = 1. This is formally shown in the proof of proposition 3 and is intuitively clear:

small changes in φ will lead to small changes in the indifference curve p(q, ulhotel., θ
l). As

this curve is above θh’s IR curve at q = 1 in case φ = 0, it will be above θh’s IR curve for

small positive values of φ.

Hence, a straightforward way to generate equilibria where the positive correlation

property fails, is to find examples where the IR constraint for the θl type lies above the

IR constraint for the θh type for each q ∈ 〈0, 1]. Then there exist t > 0 and φ > 0 such

that the example has an equilibrium with ql > qh.

We use this example to illustrate the differences between our model and the Chiappori

et al. (2006) framework. First, in their framework, higher risk types file higher expenditure

claims (in expectation) with their insurer. In the example above, the high risk type has

expected expenditure on treatments equal to F hτ = 0.014 while for the low type we have

F lτ̄ = 0.030; the opposite of Chiappori et al. (2006). Second, Chiappori et al. (2006,

pp. 789) assume (NIP assumption) that the contract with lower coverage yields a higher

profit margin for the insurer. In the example above, we find for the l-type that this margin

equals πl = pl − F lτ̄ = t = 0.018. For the h-type we know that ph ≤ p(qh, ūh, θh) and

hence we find that πh ≤ p(qh, ūh, θh) − qhF hτ = 0.0008. In other words, the margin on

the generous contract exceeds the margin on the partial coverage contract. This outcome

17Recall that in a Hotelling model with constant marginal costs c, the equilibrium price is given by c+ t.

See, for instance, Tirole (1988, pp. 280) or the proof of proposition 3 in the appendix with up = −1.
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violates the NIP assumption in Chiappori et al. (2006).

Example 3 Assume that a type θi agent falls ill with probability θi where i = h, l. Falling

ill reduces her health state from 1 to 0. If she falls ill, the agent can choose a treatment

τ ∈ Γ = [0, 1] which will bring back her health state to h. The costs of this treatment are

also τ . Hence, an agent with wealth w and insurance coverage q at price p will have money

to spend on other goods equal to m = w − p− (1− q)τ .

The agent’s utility depends on her health state and the money she has to spend on other

goods. We assume that the utility function takes the CARA form in both components and

is additively separable in the two components. The utility of an agent with health state τ

and money for other goods m is therefore

U(m,h) = −e−m − e−τ .

The agent maximizes expected utility with her treatment and contract choice. Hence, con-

ditionally on falling ill, the agent maximizes

−e−(w−p−(1−q)τ) − e−τ

with her treatment choice. Therefore, the optimal treatment choice of the agent can be

derived as

τ(w, q, p) = max{0,min{1, w − p− ln(1− q)
2− q

}} (16)

where the max and min expression ensure that the treatment is in the feasible treatment

range [0, 1]. It is straightforward to verify that pq(1, u
i, θi) = θi and therefore (C1) holds.

We want to show that p(1, ūh, θh) < p(1, ūl, θl) which then implies that ql = 1 in a

monopoly setting according to proposition 2 (and by choosing the proportion of high and

low risk types it is then straightforward to generate separating equilibria where qh < 1).

We choose wl = 2 which implies that low risk types will choose τ = 1 even when being

uninsured. With wh = 1.2, θh = 0.5 and θl = 0.45 we get p(1, ūh, θh) = 0.537 < 0.573 =

p(1, ūl, θl). Hence, the low risk type has the higher willingness to pay for a full coverage

insurance contract. The individual rationality constraints are depicted in figure 3. The

figure also shows that (SC) is violated in the example: the low risk type’s indifference

curve is steeper at q = 0 but flatter at full coverage. The reason is again that the l-type

chooses the treatment h = 1 at any coverage level while the h-type will do so only if coverage

is high enough. As figure 3 is qualitatively similar to figure 2, a duopoly equilibrium with

ql = 1 > qh can be constructed in the same way as described above.
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Figure 3: Indifference curves with parameter values as in example 3.

5. Advantageous selection

Adverse selection models predict that high risk types have efficient coverage while low risk

types are under-insured. We cited evidence in the introduction showing that in the US

health insurance market the problem is the opposite: high risk types are under-insured

while low risk types tend to have efficient coverage.

Advantageous selection models can generate the prediction that high risk types have

low coverage while low risk types have high coverage. As we mentioned above, we do not

find these models convincing for the health insurance market. In this section, we compare

our framework to the advantageous selection set-up. We discuss three main differences

and explain why our model fits the health insurance market better. We conclude this

section by pointing out the differences in policy implications of these two approaches.

Recall from the introduction a typical advantageous selection model, as in Jullien et al.

(2007). Suppose that people differ in their degree of risk aversion. Then more risk averse

people have a higher valuation of insurance. Further, assume that more risk averse people

tend to have lower expected costs. This can be the case because more risk averse people

tend to take more precautions in the form of prevention activities.

We follow Chetty and Finkelstein (2012) in defining adverse (advantageous) selection.

Take two contracts, denoted H and L where H is more generous (say, features lower

co-payments) than L. Assume each contract is priced at the average cost of the people
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choosing the contract. Then adverse (advantageous) selection is defined as the case where

the high risk type—θh in our notation—chooses the H (L) contract while θl chooses the L

(H) contract.

In a model where people differ in risk aversion, it can happen that the high risk averse

type with low expected costs chooses the H contract, while the low risk averse type with

high expected costs chooses the L contract: advantageous selection.

Although reminiscent of our result above where θh buys a contract with less coverage

than θl, there are three important differences. First, in the definition of Chetty and

Finkelstein (2012) (where contracts are priced at the average cost of the people buying

the contract) our model is an adverse selection model. As shown in section 3.2.1, perfect

competition (price equal to average cost) implies that θh gets higher coverage than θl. Only

when insurers have market power, we get that the H (L) contract is bought by θl(θh).

Second, in our set-up the relation between expected expenditure and type is not one-

to-one. At full insurance, θh features higher expected claims than θl. However, at less

than full insurance this is not necessarily the case. As the θh agent consumes less health

care than θl if there are substantial co-payments, it is not clear which type features higher

expected expenditures. We find in example 2 that the expected expenditure for θh is lower

than for θl. In empirical research, one has to be careful in interpreting this situation where

the L contract is bought by people with lower expected costs (while they are actually the

high risk type).

Finally, the most important difference between the advantageous selection model above

and our framework is our assumption 3: full insurance is efficient for each type. In

the advantageous selection model, people differ in both their degree of risk aversion and

their expected costs. It is not hard to think of examples where such a model makes

sense. For instance, people who are more risk averse tend to be more careful drivers

and hence have lower expected claims in car insurance. However, we do not find this a

convincing model of under-insurance in a health care context. Such a framework where

people differ in expected costs and degree of risk aversion implies that people that go

without health insurance (like currently in the US) decide to do so because they are

almost risk neutral and hence do not need much insurance. But recent empirical work by

Fang et al. (2008) shows that differences in risk aversion are not a source of advantageous

selection in the medigap insurance market. Moreover, the advantageous selection model

implies that due to their low degree of risk aversion, it is in fact optimal for these people
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to remain uninsured. Consequently, there is not much reason for government intervention.

In fact, in advantageous selection models policies aimed at raising insurance coverage—

like mandatory insurance—tend to reduce welfare (De Meza and Webb, 2001; Einav and

Finkelstein, 2011).

In contrast, in our model, the high risk type is under-insured (or even goes without

insurance) because she cannot afford the H contract. She needs to spend money on food,

housing, transport etc. and hence is left with the L contract. The under-insurance then

prevents access to certain valuable treatments as documented by Cohn (2007) and Schoen

et al. (2008).

Further, because of assumption 3 government intervention raising coverage for θh can

be welfare enhancing. This gives a justification for Obama’s plans for health insurance

reform to reduce the number of people without insurance as laid down in the Patient

Protection and Affordable Care Act.

6. Conclusion

Standard insurance models, e.g. Rothschild and Stiglitz (1976) or Stiglitz (1977), predict

higher coverage for agents with higher risks. We show that this prediction no longer holds

if single crossing is violated and firms have market power.

In the health care sector, agents with higher income have lower risks and more insur-

ance. Put differently, the predictions of the standard insurance model with single crossing

are contradicted by the data. We show that the negative correlation between income

and risk can cause a violation of single crossing. With a violation of single crossing, the

empirical findings in the health literature can be reconciled with a standard insurance

model.

From an empirical point of view, our paper casts doubt on the positive correlation

test: given our result that separating equilibria exist in which agents with higher risk have

less coverage (negative correlation), it is evident that the results of such a test have to be

interpreted with care. In particular, such a test cannot be used to test for the presence of

asymmetric information when single crossing is violated.

Further, our analysis shows that one should be careful with interpreting actual expen-

diture as a signal of risk type. Indeed, it is easy to find examples where the high risk type

(due to low coverage and low utilization) has lower expected expenditure than the low risk
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type.

Although our result that high risk types end up under-insured while low risk types

have efficient insurance is reminiscent of advantageous selection models, the welfare im-

plications are very different. In our set-up, policy measures that raise insurance coverage

for the under-insured can be welfare enhancing. This is in line with the motivation of the

ObamaCare reform package.
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7. Appendix: Proofs

Proof of lemma 1. We start with the proof of the second statement. Suppose

both incentive constraints were binding, i.e. θh and θl are both indifferent between the

two contracts. First, look at the case where qh, ql < 1. Call the utility levels of the

two types under the equilibrium contracts ul and uh. Now take the indifference curves

corresponding to these utility levels and call them p(q, ul, θl) and p(q, uh, θh) and define

ι = arg maxk∈{l,h} p(1, u
k, θk). Changing θι’s menu point to (1, p(1, uι, θι)) will increase

profits by assumption 3. By the definition of ι, this change is also incentive compatible.

Second, take the case where qk = 1 and q−k < 1 for some k ∈ h, l and suppose again

that both incentive constraints were binding. But according to assumption 3 pooling on

the contract of θk would lead to higher profits. Hence, at most one incentive constraint is

binding.

qι = 1 follows from the argument in the first step and therefore at least one type has

to have full coverage. Q.E.D.

Proof of proposition 1. Suppose to the contrary that qh < 1 in equilibrium.

Lemma 1 implies then that ql = 1. Note that θh has to prefer her contract strictly to

the θl contract: otherwise, pooling on the θl contract would be a profitable deviation

by assumption 3. Given that (ICh) is not binding, the θl contract leads to zero profits:

otherwise, marginally decreasing its price (and thereby attracting all demand of θl types)

would be a profitable deviation.

The contract (qh, ph) leads to nonnegative profits; otherwise it would not be offered in

equilibrium.18 Denote by uh the utility level θh derives from (qh, ph) and by p(q, uh, θh)

the indifference curve of θh associated with her contract. By assumption 3, the contract

(1, p(1, uh, θh)) for type θh yields higher profits than (qh, ph). For ε > 0 small enough,

the contract (1, p(1, uh, θh) − ε) is strictly preferred by θh to (qh, ph) and yields higher

profits than (qh, ph). If the contract (1, p(1, uh, θh) − ε) also attracts θl types, profits

from those θl types will be positive as well as those are better risks. This would be an

additional gain as it was shown above that the θl contract yields zero profits. Therefore,

(1, p(1, uh, θh) − ε) is a profitable deviation, i.e. a contract with strictly positive profits

and demand. Consequently, qh < 1 cannot be an equilibrium. Q.E.D.

Proof of lemma 2 If equation (11) binds, the MW contract coincides with the RS

18In fact, it has to be a zero profit contract.
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contract and the result follows from proposition 1 above.

Consider the case where inequality (11) is slack in the MW solution. Then it must be

the case that (8) binds. To see this, suppose—by contradiction—that both (8) and (11)

are slack. But then it is possible to raise ph and reduce pl in such a way that (9) and (10)

remain satisfied. This increases utility of the θl type, contradicting that we are considering

a solution to (PMW ). It follows from this contradiction that (8) is binding.

Now we claim that qh = 1. Again, we prove this by contradiction. Suppose that

qh < 1. We consider two cases:

1. p(1, ul, θl) ≤ p(1, uh, θh): we show that increasing qh < 1 to 1 raises the θl type’s

utility. First, note that increasing qh to 1 and ph to p̃h = min{p(1, uh, θh), c(1, uh, θh}

does not violate (8) as utility stays the same or is increased for the θh type. Second,

it does not violate (11) by construction of p̃h. Third, (10) is not violated by this

change either. To see this, recall that initially (11) was slack: ph < ch. Now we either

have p̃h = ch or p̃h = p(1, uh, θh). In both cases, equation (10) is strictly relaxed by

this change (in the latter case because of assumption 3). Finally, consider (9). If

this constraint is violated (because p̃h = c(1, uh, θh) < ph and ũh > uh), the solution

ql = 1, pl = p̃h, qh = 1, ph = p̃h is feasible (since c(1, ul, θl) < c(1, uh, θh)). If this

constraint is not violated, the change to qh = 1 is feasible. As the change relaxed

constraint (10) strictly, it is possible to reduce ph, pl slightly such that all constraints

remain satisfied and θl’s utility increases. This contradicts that the solution with

qh < 1 solves problem (PMW ).

2. p(1, ul, θl) > p(1, uh, θh): this implies that ql = 1. Assume by contradiction that ql <

1. Increase ql to q̃l = 1 and pl to p̃l = p(1, ul, θl)−ε for ε > 0 small. By assumption 3,

this change satisfies (10). Further, (8) is satisfied because p(1, ul, θl) > p(1, uh, θh).

Finally, (9) is relaxed by this change and (11) is unaffected. Hence this change

satisfies all constraints and increases utility for the θl-type. This contradicts that

the contracts with ql < 1 solve (PMW ). But then we have ql = 1 and p(1, ul, θl) >

p(1, uh, θh) which implies that (8) is slack. However, we showed above that (8) is

binding if (11) is slack.

In each of these two cases we have a contradiction and hence we conclude that qh =

1. Q.E.D.

Proof of proposition 2. Define ι = arg maxk∈{h,l} p(1, ū
k, θk). By lemma 1, one
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type has full coverage. Suppose that qι < 1 and therefore qκ = 1 with κ ∈ {h, l} and

κ 6= ι. Note that the individual rationality constraint of θι cannot be binding as otherwise

θι would misrepresent as θκ by the definition of ι. But then the incentive compatibility

constraint of θι has to be binding as the monopolist could increase pι otherwise. By

assumption 3, the monopolist could achieve a higher profit by pooling both types on θκ’s

contract. This contradicts the optimality of qι < 1.

If both types are pooled, the optimal contract will be (q, p) = (1, p(1, ūκ, θκ)) and the

individual rationality constraint of θκ will be binding. If the types are separated, the

incentive compatibility constraint of θκ cannot bind: since qι = 1, pooling on θι’s contract

would lead to higher profits by assumption 3 if the incentive constraint was binding. As

increasing pκ relaxes the incentive compatibility constraint of θι, the individual rationality

constraint of θκ has to bind: otherwise, increasing pκ would increase profits.

Last note that increasing pι would be feasible and increase profits if neither the incentive

compatibility nor the individual rationality constraint of θι was binding. Q.E.D.

Proof of proposition 3. The first step is to analyze the game where φ = 0, i.e. a

standard Hotelling game where only low risk type exist. From assumption 3, ql = 1 in this

setting and firms only compete in prices. By assumption 2, costs do then not depend on

price and can be denoted by c̄. A firm maximizes (pl − c̄)(1
2 + u(1,p,θl)−ub

2t ) where ub is the

utility offered by the other firm. Because of the assumption upp(1, p, θ
l) ≤ 0, the objective

is concave and the best response is defined by the first order condition

t+ u(1, p, θl)− ub + (p− c̄)up(1, p, θl) = 0.

Note that there is a symmetric equilibrium defined by the equation (p− c̄)up(1, p, θl) = −t.

The left hand side of this equation is decreasing in p and therefore there is only one

symmetric equilibrium. We will now argue that there are also no asymmetric equilibria,

i.e. the game has a unique equilibrium. The argument is that the slope of the best

response function is less than one whenever crossing the 45◦ line where p = pb: by the

implicit function theorem, p′(pb) =
−up(1,pb,θl)

−2up(1,p,θl)+(p−c̄)upp(1,p,θl)
. Consequently, 0 < p′(pb) < 1

whenever p = pb. Given that there is a symmetric equilibrium where p = pb, this implies

that the best response functions can only intersect once, i.e. there is a unique equilibrium.

The second step is to see that by choosing t appropriately the game with φ = 0 leads

to an equilibrium price p∗ ∈ (p(1, ūh, θh), p(1, ūl, θl)). This simply follows from the fact

that t “shifts” the first order condition above. For the rest of the proof let t take such a

value.
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The third step is to show that for φ small enough ql = 1 and qh < 1.19 By lemma

1, at least one type has to have full coverage. If qh = 1, then ph ≤ p(1, ūh, θh) to satisfy

individual rationality. Suppose, both types were pooled. Recall that pl < p(1, ūh, θh)

is not an equilibrium when φ = 0, i.e. there exists a profitable deviation for at least

one insurer. For φ small enough, this deviation is again profitable as profit functions are

continuous in all variables and parameters. Hence, there cannot be pooling for small but

positive φ. Next suppose there were separating equilibria with qh = 1 and ql < 1 for all

φ > 0. By assumption 3, ql has to converge to 1 as φ decreases (otherwise setting ql = 1

and adjusting the price to keep ul fixed is a profitable deviation for small enough φ). But

then the same argument as in the pooling case shows that there is a profitable deviation

for φ small enough. It follows that ql = 1 and qh < 1 for small enough φ > 0. Q.E.D.

19Existence of equilibrium follows from Glicksberg (1952).
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