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In this supplementary material, we relax some of the assumptions made in the paper

and illustrate how to derive the optimal mechanism in these cases. First, we consider

violations of the monotone hazard rate property (or violations of assumption 2 regarding

the sign cqθθ) under which the first order approach is no longer valid. In section 2, we

consider violations of assumption 3. That is, we allow first best welfare to be (locally)

maximal at interior types.

1. Second order and global incentive compatibility

In the main paper, we made assumptions on third derivatives of the cost function and

the distribution of θ. This allowed us to use a first order approach and ignore global IC

constraints. In this section, we introduce the global IC constraint. Then we relax the

assumptions of the paper such that the solution of the relaxed problem is not necessarily

incentive compatible. We show an ironing procedure that can deal with violations of

second order incentive compatibility. Finally, we present a family of cost functions for

which the first and second order condition for IC (which are both local) imply global

IC.

A menu (q, x, t) is IC in a global sense if and only if

Φ(θ̂, θ) ≡ π(θ, θ)− π(θ̂, θ) ≥ 0 (S1)

for all θ, θ̂ ∈ [θ, θ̄]; where π(θ̂, θ) is defined in equation (3) of the main paper.
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Equation (4) in the main paper gives the first order condition for IC. This is not

sufficient for (even) a local maximum. The relevant second order condition can be

written as follows.

Lemma S1. Second order incentive compatibility requires

Xθ(θ)cθ(q(θ), θ) +X(θ)cqθ(q(θ), θ)qθ(θ) ≤ 0. (SOC)

Proof. Define the function

Φ(θ̂, θ) = π(θ, θ)− π(θ̂, θ) ≥ 0

By IC this function is always positive and equal to zero if θ̂ = θ. In other words, the

function Φ reaches a minimum at θ̂ = θ. Thus truth-telling implies both

∂Φ(θ̂, θ)

∂θ̂

∣∣∣∣∣
θ̂=θ

= 0 (S2)

and
∂2Φ(θ̂, θ)

∂θ̂2

∣∣∣∣∣
θ̂=θ

≥ 0 (S3)

Since equation (S2) has to hold for all θ̂ = θ, differentiating gives

∂2Φ(θ̂, θ)

∂θ̂2

∣∣∣∣∣
θ̂=θ

+
∂2Φ(θ̂, θ)

∂θ̂∂θ

∣∣∣∣∣
θ̂=θ

= 0.

Then equation (S3) implies that

∂2Φ(θ̂, θ)

∂θ̂∂θ

∣∣∣∣∣
θ̂=θ

≤ 0.

It follows from the definition of Φ that

∂2Φ(θ̂, θ)

∂θ̂∂θ

∣∣∣∣∣
θ̂=θ

= Xθ(θ)cθ(q(θ), θ) +X(θ)cqθ(q(θ), θ)qθ(θ) ≤ 0

which is the inequality in the lemma. Q.E.D.

As shown in textbooks like Laffont and Tirole (1993), first and second order condi-

tions for IC imply global IC (as in equation (S1)) if cθ < 0 for all q ∈ IR+. Because we

assume that firms are specialized (assumption 2), local IC does not automatically imply

global IC. Hence, we still need to verify global IC even if (4) and (SOC) are satisfied.
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q

V V

(q(θ), V V (θ))

xθcθ + xcqθqθ = 0

Figure S1: Solution for quality q(θ) and virtual valuation V V (θ) for the case where

(second order) condition (SOC) is violated.

How should the solution to the relaxed problem be adapted if it is not globally IC

because our assumptions are not satisfied? For concreteness, we focus here on the WM

case and assume that the problems arise because of a violation of the MHR assumption.

The cases where third derivatives cause problems with (SOC) are dealt with analogously.

In the WM case, the change in q for θ > θb is given by

qθ(θ) =
cqθ(q(θ), θ)− cqθθ(q(θ), θ)1−F (θ)

f(θ)
− cqθ(q(θ), θ)

d( 1−F (θ)
f(θ) )
dθ

Sqq(q(θ))− cqq(q(θ), θ) + cqqθ(q(θ), θ)
1−F (θ)
f(θ)

. (S4)

Now we consider the case where d((1−F (θ))/f(θ))/dθ > 0 for θ > θb in such a way

that qθ < 0 and such that qθ < 0 causes a violation of (SOC). We first sketch how this

is dealt with in general. Then we work out an example.

In the one-dimensional case, a violation of (SOC) is dealt with by bunching types

on one quality level q; see Guesnerie and Laffont (1984). In the two-dimensional case (q

and X), it is not necessarily true that a violation of (SOC) leads to bunching of types

θ on the same quality q and probability of winning X. Below we do not work with X

but with the virtual valuation V V as there is a one-to-one relation between the two

(i.e. higher V V implies higher X and the other way around).
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Now, we explicitly add constraint (SOC) to the optimal control problem stated in

lemma 2 of the paper: As qθ is part of the second order condition, the optimal control

problem has y = qθ as control variable and q and π as state variables. The Lagrangian

of this problem is

L = f(θ)[X(θ)(S(q(θ))− c(q(θ), θ))− π(θ)] (S5)

+ λ(θ)(πθ(θ) +X(θ)cθ(q(θ), θ))

+ ξ(θ)(qθ(θ)− y(θ))

− µ(θ)(Xθ(θ)cθ(q(θ), θ) +X(θ)cqθ(q(θ), θ)y(θ))

+ η(θ)π(θ)dθ.

In the optimum, the following first order conditions have to be satisfied:

∂L
∂y

= −ξ(θ)− µ(θ)X(θ)cqθ(q(θ), θ) = 0 (S6)

ξθ(θ) =
∂L
∂q

= X(θ) [f(θ)(Sq(q(θ)− c(q(θ), θ)) + λ(θ)cqθ(q(θ), θ)− µ(θ)cqqθ(q(θ), θ)y(θ)]

−µ(θ)cqθ(q(θ), θ)Xθ(θ) (S7)

λθ(θ) =
∂L
∂π

= −f(θ) + η(θ) (S8)

Differentiating (S6) gives

ξθ(θ) = −µθ(θ)X(θ)cqθ(q(θ), θ)− µ(θ)Xθ(θ)cqθ(q(θ), θ)− µ(θ)X(θ)cqθθ(q(θ), θ)

−µ(θ)X(θ)cqqθ(q(θ), θ)qθ(θ).

Plugging this expression into (S7) gives (after cancelling terms and dividing by X) the

following first order condition for q:

f(θ)(Sq(q(θ))− cq(q(θ), θ)) + λ(θ)cqθ(q(θ), θ) + µ(θ)cqθθ(q(θ), θ) = −µθ(θ)cqθ(q(θ), θ).

(S9)

Consider figure S1 to illustrate the procedure. This figure shows equation (SOC)

(where it holds with equality) in (q, V V ) space and the solution (q(θ), V V (θ)) that fol-

lows from the planner’s optimization problem while ignoring the second order condition;

i.e. assuming µθ(θ) = 0 for all θ. The former curve is downward sloping in the WM

case since
dX

dq
=
Xθ(θ)

qθ(θ)
= −X(θ)

cqθ(q(θ), θ)

cθ(q(θ), θ)
< 0.
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In the simple case (that we also use in the example below) where cθθ = 0, this curve

boils down to

X(θ)cθ(q(θ), θ) = −K < 0 (S10)

for some constant K > 0, as differentiating equation (S10) with respect to θ indeed

gives the constraint Xθcθ +Xcqθqθ = 0.

The solution of the relaxed program (q(θ), V V (θ)) (ignoring the second order con-

straint!), starts at θ in the bottom left corner and moves first over the thick (red) part

of this curve, then follows the thin (blue) part, curving back (i.e. both q and x fall with

θ) then both q and x increase again with θ and we end on the thick (red) part of the

curve. The part of the curve where qθ, Xθ < 0 violates (SOC).

Hence, we need to find θa where (SOC) starts to bind. Then from θa onwards, we

follow the binding constraint till we arrive at θb, from which point onwards we follow

the solution (q(θ), V V (θ)) again. As shown in figure S1, the choice of θa determines

both the trajectory (q̃(θ), ˜V V (θ)) satisfying equation (SOC) and the end point of this

trajectory θb. Since µ(θ) = 0 both for θ < θa and for θ > θb, it must be the case that∫ θb
θa
µθ(θ)dθ = 0. To illustrate, for the case where cqθθ = 0,1 this can be written as (using

equation (S9))2∫ θb

θa

f(θ)(Sq(q(θ))− cq(q̃(θ), θ)) + (1− F (θ))cqθ(q̃(θ), θ)

cqθ(q̃(θ), θ)
dθ = 0. (S11)

We now illustrate this approach with an example.

Example 1. To violate the monotone hazard rate assumption we use the density f(θ) =

(θ− a)2 + 1/50 with support [0, a+ 1/4] where a has to be approximately 1.42 to satisfy

the requirements of a probability distribution. The hazard rate of this distribution is

depicted in figure S2.

1If cqθθ 6= 0, the differential equation (S9) has to be solved for µ(θ). Although a bit tedious, this is

do-able since the differential equation is linear and first order in µ(θ).
2We immediately plug in λ(θ) = 1−F (θ). The reason is that (SOC) cannot bind at types that have

zero profits in the relaxed solution: For these types, q(θ) = k(θ) in the relaxed solution and therefore

cθ(q(θ), θ) = 0 and qθ(θ) = kθ(θ) > 0. This implies that (SOC) is strictly slack in the relaxed solution

for types with zero profits. Hence, θa and θb cannot be in the zero profit interval. Consequently,

both θa and θb (and therefore also types in between) are in the part of the relaxed solution where

λ(θ) = 1− F (θ).
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Figure S2: Inverse hazard rate with f(θ) = (θ − a)2 + 1/50

Assume that there are two firms, that S(q) = q and that c(q, θ) = 1
2
q2 − qθ + θ.

Then cθ(q, θ) = 1− q which changes sign at q = 1. As cθθ = 0, the binding second order

condition takes the form of (S10):

X =
K

q − 1

for some K > 0. Note that this equation does not depend on θ. Hence, in this case,

“following the constraint” takes the form of bunching θ ∈ [θa, θb] on some point

(q̃, ˜V V ) (S12)

where ˜V V corresponds to the probability X̃ = K
q̃−1 . Choosing θa, fixes q̃ = q(θa) and

θb since q(θb) = q̃. Writing the dependency of q̃, θb on θa explicitly, θa solves equation

(S11): ∫ θb(θa)

θa

f(θ)(1− (q̃(θa)− θ))− (1− F (θ))dθ = 0. (S13)

Since equation (SOC) will already start to bind for θa where qθ(θa) > 0, it is routine to

verify that this equation is downward sloping in θa. The unique solution in this example

is θa ≈ 1.1685 which gives a corresponding θb = 1.428 and q̃ = 1.923.

While the ironing procedure described above takes care of the local second order

condition (SOC), this does not necessarily imply global incentive compatibility. Global

constraints are mathematically intractable in general frameworks; see Araujo and Mor-

eira (2010) and Schottmüller (2011) for special examples of how to handle global con-

straints. However, the following proposition establishes that global constraints do not

bind for a family of cost functions. This family includes the functions we used in the

example and the most commonly used linear-quadratic cost functions.
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Proposition S1. If cθθ = 0 and the local second order condition (SOC) is satisfied, the

solution is globally incentive compatible.

Proof. As shown in the proof of lemma 3 in the main paper, incentive compatibility

between θ and θ̂ boils down to the inequality∫ θ̂

θ

∫ θ̂

t

Xθ(s)cθ(q(s), t) +X(s)cθq(q(s), t)qθ(s) ds dt ≤ 0.

Now note that cθθ = 0 implies

Xθ(s)cθ(q(s), t) +X(s)cθq(q(s), t)qθ(s) = Xθ(s)cθ(q(s), s) +X(s)cθq(q(s), s)qθ(s).

But then global incentive compatibility has to be satisfied asXs(s)cθ(q(s), s)+X(s)cθq(q(s), s)

qs(s) ≤ 0 by the local second order condition. Q.E.D.

2. Best interior type: Solutions if assumption 3 is violated

This material illustrates the optimal mechanism if assumption 3 in the paper does not

hold. Without assumption 3 the first best quality qfb can intersect k at several types and

first best welfare is not necessarily quasiconvex in type. The only qualitative differences

to the optimal mechanism in the paper are that (i) there can be more than one interval

of types with zero expected rents and (ii) there can be virtual valuation maxima at

interior types.

It is important to note that the proof of lemma 2 does not depend on assumption 3.

Hence, lemma 2 still applies. We will focus again on solving the relaxed program and

check global incentive compatibility ex post.

We will now solve an example that illustrates how a failure of assumption 3 changes

the optimal mechanism. In the example, first best welfare is W-shaped and we can get

two zero profit intervals. After solving the relaxed program, we show a monotonicity

result and check global incentive compatibility.

Example Let S(q) = q, n = 2 and c(q, θ) = q2/2 + (1 − θ)q + 1
α

log(eα/2 + eaθ).
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Assume types are uniformly distributed on [0, 1]. This implies (see figure S3)

qfb(θ) = θ

k(θ) =
1

1 + e−α(θ−1/2)

ql(θ) = 2θ

qh(θ) = 2θ − 1.

qm

θa θb θc 1
θ

qfb

k qm

θa θb θc
θ

qfb

k

Figure S3: Example with α = 6 and α = 9

The new feature in this example is that there is an interior type (θb in figure S3)

which locally maximizes first best welfare. Also there are two interior types locally

minimizing first best welfare (θa and θc).

In line with the solution in the paper, one will expect that the solution for high types

(around 1) is qh and the solution for low types (around 0) is ql. At the intersection

of ql (qh) with k a zero profit interval starts (ends). As in the paper, we denote these

intersection types θ1 and θ2. Because first best welfare is not quasiconvex, it seems,

however, possible that some types in (θ1, θ2) have positive profits. If this is true, there

will be a type θ′ in (θ1, θ2) such that profits attain a local maximum at this type. Hence,

πθ = −X(θ′)cθ(q(θ
′), θ′) = 0 at this local profit maximizer. We conclude that q(θ′) =

k(θ′). As θ′ maximizes profits and πθ = −Xcθ by first order incentive compatibility,

types slightly below θ′ must have q(θ) > k(θ) and types slightly above θ′ will have
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q(θ) < k(θ). The first order condition

Sq(q)− cq(q(θ), θ) + λ(θ)cqθ(q(θ), θ) = 0 (S14)

can be solved for λ(θ′) as we know q(θ′) = k(θ′). In our example, λ(θ′) = k(θ′) + θ′.

Also the first order condition λθ(θ) = −f(θ) + η(θ) has to be satisfied. Given that

types around θ′ have positive profits, we have η(θ) = 0 for those types. This implies

λ(θ) = k(θ′) + 2θ′ − θ for θ close to θ′. Plugging this into (S14), we obtain q for the

types within (θ1, θ2) that have positive profits:

qm(θ) = 2θ − k(θ′)− 2θ′.

The interval of types with zero profits within (θ1, θ2) has to go from the first to the third

intersection type of qm with k (the second intersection is θ′). Call these two intersection

types θ′1 and θ′2. Hence, the two zero profit intervals are [θ1, θ
′
1] and [θ2, θ

′
2]. θ

′ is then

defined by the continuity of profits, i.e.
∫ θ′2
θ′1
−x(θ)cθ(q

m(θ), θ) dθ = 0.

Following our conjecture the first zero profit interval would start at θ1 and end where

qm intersects with k for the first time. The second zero profit interval would start at

the third intersection of qm and k and end at θ2. However, it is clear from figure S3 that

the number of intersection points between qm and k depends on α because α influences

the slope of k. It turns out that for α ≤ 8 qm is steeper than k at every type. Hence, k

and qm can only have one intersection point. Only for α > 8 there are three intersection

points and the solution structure with two zero profit intervals as described above is

feasible.

Let’s first analyze the case where α = 9. In our example, everything is symmetric

around 1/2. Hence, it is not surprising that θ′ = 1/2. It then follows that qm intersects

k at the types θ′1 = 0.362, θ′ = 0.5 and θ′2 = 0.638. The intersection of ql and k is

θ1 = 0.006 and the intersection of qh and k is θ2 = 0.994. Hence, we obtain the solution

candidate

q(θ) =



2θ for θ ∈ [0, θ1]

1
1+e−9(θ−1/2) for θ ∈ (θ1, θ

′
1] ∪ (θ′2, θ2]

2θ − 1
2

for θ ∈ [θ′1, θ
′
2)

2θ − 1 for θ ∈ [θ2, 1]
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together with the costate3

λ(θ) =



−θ for θ ∈ [0, θ1]

θ − 1
1+e−9(θ−1/2) for θ ∈ (θ1, θ

′
1] ∪ (θ′2, θ2]

1
2
− θ for θ ∈ [θ′1, θ

′
2)

1− θ for θ ∈ [θ2, 1]

and the Lagrange multiplier of the participation constraint4

η(θ) =

2− 9e−9(θ−1/2)

(1+e−9(θ−1/2))2
for θ ∈ [θ1, θ

′
1] ∪ [θ′2, θ2]

0 else.

Types in [θ1, θ
′
1]∪ [θ′2, θ2] have zero profits. Rents of other types are determined through

πθ(θ) = −x(θ)cθ(q(θ), θ) and x(θ) is given through the virtual valuation; see lemma 2

in the main text. Using an envelope argument, V Vθ(θ) = −cθ(q(θ), θ) +λθ)cθ(q(θ), θ) +

λ(θ)cθθ(q(θ), θ). Note that the virtual valuation has a maximum at θ′ = 0.5: As λ(0.5) =

0 and cθ(q(0.5), 0.5) = 0, it is immediately clear that V Vθ(0.5) = 0. More specifically,

for types around 0.5 we get V Vθ(θ) = 2
(

2θ − 0.5− 1
1+e−9(θ−1/2)

)
+(0.5−θ) 9e−9(θ−1/2)

(1+e−9(θ−1/2))
2

which is positive for θ slightly below 0.5 and negative for θ slightly above 0.5.

Note that η(θ) ≥ 0 for all types as necessary for optimality. Because of the way we

constructed the solution candidate, the sufficient condition for optimality of theorem 1

in Seierstad and Sydsaeter (1987, ch. 5.2) is satisfied. We will argue below that global

incentive compatibility is also satisfied and therefore the solution is indeed the optimal

contract.

We still have to return to the case α ≤ 8. As we pointed out above, it is impossible

in this case to have types with positive profits within (θ1, θ2). The solution will be

very similar to the WNM solution in the paper. Types in (θ1, θ2) will have zero profits

and q(θ) = k(θ). Types above θ2 will have q(θ) = qh(θ) and types below θ1 will

have q(θ) = ql(θ). It is straightforward to check that this solution indeed satisfies all

optimality conditions.

3λ for types in the zero profit intervals (θ1, θ
′
1] ∪ (θ′2, θ2] is chosen such that (S14) is satisfied with

q(θ) = k(θ).
4η for types in the zero profit interval is defined by η(θ) = f(θ) + λθ(θ).
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Monotonicity result Monotonicity of the decision variables is of independent in-

terest but also plays a role in second order incentive compatibility. The following lemma

provides a useful result.

Lemma S2. If the relaxed solution satisfies the two properties

1. q(θ) > k(θ) implies q(θ) ≤ qfb(θ)

2. q(θ) < k(θ) implies q(θ) ≥ qfb(θ)

then qθ(θ) ≥ 0 and Xθ(θ)cθ(q(θ), θ) ≤ 0 for each θ ∈ [θ, θ̄].

Proof. To show the second claim of the lemma, we will show that Xθ(θ) ≥ 0

if q(θ) > k(θ) and Xθ(θ) ≤ 0 if q(θ) < k(θ). If q(θ) = k(θ), the claim is trivial

as cθ(k(θ), θ) = 0. By the first order condition of q and the definition of the virtual

valuation we have

sign{qθ(θ)} = sign

{
−cqθ

(
1− d λ(θ)/f(θ)

dθ

)
+
λ(θ)

f(θ)
cqθθ(q(θ), θ)

}
V Vθ(θ) = −cθ(q(θ), θ)

(
1− d λ(θ)/f(θ)

dθ

)
+
λ(θ)

f(θ)
cθθ(q(θ), θ).

Note first that the lemma holds for types in a zero profit interval where q(θ) = k(θ).

As k is increasing, the result on qθ follows.

Now take a type θ′ with positive profits. First assume πθ(θ
′) ≥ 0. Let θ′′ be smallest

local π-maximizing type with θ′′ ≥ θ′. If θ′′ = θ̄, then λ(θ′′) = 0 by the transversality

condition. If θ′′ < θ̄, we show λ(θ′′) = 0 in the following way. From πθ(θ
′′) = 0, we

know that q(θ′′) = k(θ′′) and as θ′′ maximizes π we have qθ(θ
′′) < kθ(θ

′′). Therefore,

λ has to be positive for types slightly below θ′′ and negative for types slightly above

θ′′. We conclude that λ(θ′′) = 0. From the first order optimality condition for π and

the fact that π(θ) > 0 for θ ∈ (θ′, θ′′), we conclude that λ(θ′) = F (θ′′) − F (θ′). MHR

implies that the derivative of (F (θ′′) − F (θ))/f(θ) is less than 1. The previous steps

implied q(θ′) ≥ k(θ′) and d λ(θ)/f(θ)
dθ

∣∣∣
θ=θ′

< 1. This proves the claim in the lemma for all

types at which rents are increasing.

Next, take a type θ′ where πθ(θ
′) < 0. Let θ′′ be the highest type that locally

maximizes π such that θ′′ < θ′. Using the same steps as in the previous paragraph, it is

possible to show q(θ′) < k(θ′), λ(θ′) = F (θ′′) − F (θ′) < 0 and d λ(θ)/f(θ)
dθ

∣∣∣
θ=θ′

< 1. This

proves the claim for types at which rents are decreasing.
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Note that the relaxed solution in the paper (i.e. when assumption 3 is satisfied)

satisfies the properties of the previous lemma. Also the relaxed solution in the example

above satisfies these properties.

Global incentive compatibility The proofs of lemma 4 and 5 in the appendix of

the paper are not using assumption 3 explicitly. However, they use the monotonicity

properties above, e.g. Xθ(θ)cθ(q(θ), θ) ≤ 0 or qθ(θ) ≥ 0. Therefore, the lemma above

gives an easy to check sufficient condition for global incentive compatibility. If the two

properties in the lemma are satisfied by the relaxed solution, it will be globally incentive

compatible as the proof of lemma 5 in the paper can be readily extended. Hence, the

solution in the example above is globally incentive compatible.
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