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Abstract

If doctors take the costs of treatment into account when prescribing

medication, their objectives differ from their patients’ objectives be-

cause the patients are insured. This misalignment of interests hampers

communication between patient and doctor. Giving cost incentives to

doctors increases welfare if (i) the doctor’s examination technology is

sufficiently good or (ii) (marginal) costs of treatment are high enough.

If the planner can costlessly choose the extent to which doctors take

costs into account, he will opt for less than 100%. Optimal health care

systems should implement different degrees of cost incentives depending

on type of disease and/or doctor.
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1 Introduction

It is well known that insurance creates moral hazard: In the health sector,

insured people would like to have more expensive treatments than socially op-

timal. On the other hand, treatments are normally prescribed by doctors. If

doctors took the costs of treatment into account in their treatment decision,5

the moral hazard problem should disappear. The tradition in the medical pro-

fession, however, is to view oneself as advocate of one’s patients. Consequently,

the patient’s well-being is put first and costs are only secondary. What is more,

doctors are often explicitly hostile towards cost incentives in doctor remuner-

ation. The German chamber of doctors, for instance, writes in its principles of10

health policy1

[. . . ] the role of the doctor as advocate for his patient must not

be restricted [. . . ] The state must not establish financial schemes

(e.g. bonus-malus system) which could suggest to the patient that

materialistic, self-serving aspects are also of importance for medical15

decisions.

It is important to understand whether the doctors’ concerns are mainly self-

interested, e.g. worries about reputation and pay, or whether financial incen-

tives for doctors could have a negative impact on social welfare. Put differently,

can patient advocacy be interpreted as an efficient institutional response to the20

particular structure of the health care market? Answering this question will

also give some insight into the optimal design of health care markets. In par-

ticular, in which parts of the health care system should cost incentives for

doctors be employed and where are cost incentives less likely to succeed?

This paper focuses on the communication between patient and doctor. The25

patient’s input, e.g. describing his symptoms and their intensity, is vital to

1Translation by the author. Original title and source: “Gesundheitspolitische Leitsätze

der Ärzteschaft–Ulmer Papier” Beschluss des deutschen Ärztetags 2008, Anlage 1, p. 6,

http://www.bundesaerztekammer.de/downloads/UlmerPapierDAET111.pdf
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reach the right diagnosis.2 The main mechanism I explore in this paper is the

following: Patients are (fully) insured. If doctors take costs into account in

their treatment decision, their objectives and the objectives of their patients

are no longer aligned.3 Such a misalignment undermines the patient’s trust in

his doctor which in turn affects communication negatively.4 More technically,5

in a setting where the patient has private information, e.g. about his symptoms

and their intensity, he has the possibility to exaggerate his symptoms (or their

intensity) in order to get a more expensive treatment. Of course, the doctor

will anticipate such strategic exaggerating. This anticipation gives the patient

further incentives to exaggerate and so on.10

The appropriate model to analyze such a “rat race” is the cheap talk frame-

work. This paper will therefore extend the canonical cheap talk model to the

imperfect information setting typical for the health sector. Although a com-

plete breakdown of communication can be prevented, communication will be

worse in equilibrium because of the misalignment of interests, i.e. less informa-15

tion is transmitted from patient to doctor. It is shown that this communication

effect can make a system without cost incentives preferable from a social wel-

fare point of view. If the patient’s collaboration is hardly needed, a system

with cost incentives is preferable. For example, a doctor can easily establish

that a patient has a broken leg by having an X-ray. The symptoms reported20

2The importance of communication is also stressed in the aforementioned document of

the German chamber of doctors where it is stated that “health can neither be commanded

nor produced since health depends crucially on the patient’s collaboration.” Also there

is a whole string of the medical literature dealing with doctor-patient communication, see

Stewart (1995) for a survey.
3Negative effects from cost incentives on the doctor-patient relationship are also estab-

lished in the medical literature, see for example Rodwin (1995), Kao et al. (1998) or Gallagher

and Levinson (2004).
4There is no doubt that patients understand this nexus: According to Gallagher et al.

(2001) 73% of their respondents dislike the idea of a cost control bonus for their doctor and

91% favor disclosure to the patient if such a bonus was in place. Furthermore, 95% of those

who dislike the bonus stated that the bonus would lower their trust in their physician.
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by the patient are less important in this case. If, on the other hand, an illness

might have a psychological background, the patient’s collaboration is essential

and a system without cost incentives might be preferable.

From a technical point of view, the paper contributes to the cheap talk

literature following the seminal paper by Crawford and Sobel (1982). Their5

model is extended in Chen (2009) and de Barreda (2010) to a setup where

the decision maker receives a noisy signal. My paper generalizes further by

substituting the perfect information on the sender/expert/patient side by a

noisy signal.5

This paper complements existing literature on the design of health care10

systems. Early contributions as Arrow (1963) and Pauly (1968) already point

out the moral hazard caused by health insurance: Insured patients might over-

consume treatment from a social welfare perspective because they are insured.

Ma and McGuire (1997) introduce the physician as an additional player and

analyze contractual difficulties in the health market. In particular, health out-15

come and doctor’s effort are non-contractible and even the quantity of care

consumed can be subject to misreporting. Ma and McGuire (1997) analyze

how these contractual constraints influence optimal contracts between insur-

ance and patient as well as between insurance and physician. My paper focuses

on a different kind of constraint, i.e. a constraint in information transmission20

arising in the communication between doctor and patient. It will be shown that

the necessity of information transmission between patient and doctor might

constrain the power of the incentive scheme offered to the doctor.

Obviously related is the literature on physician compensation and managed

care. In his survey of the managed care literature, Glied (2000) mentions two25

problems of “supply-side cost sharing,” i.e. cost incentives for physicians: (i)

underprovision of necessary services and (ii) strong incentives to avoid costly

5Ishida and Shimizu (2010) also considers a setting where both sides have noisy signals.

They consider the case where the state of the world is binary and the signal space is discrete.

My paper uses a continuum of health states and signals.
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cases. In this context, my paper adds a third problem: Hampered information

transmission between doctor and patient. Furthermore, my paper provides one

possible explanation for the ambiguous cost effect of managed care mentioned

in Glied (2000).

Also related is the literature on physician agency with asymmetric informa-5

tion, see McGuire (2000) for a survey. However, this literature focuses mainly

on the observability and contractibility of quality and effort choices while my

paper analyzes communication between doctor and patient. An exception to

this focus is the literature on supply induced demand, see Pitchik and Schotter

(1987); Calcott (1999); De Jaegher and Jegers (2001). These papers model a10

doctor sending cheap talk messages concerning recommended treatments to

the patient. A conflict of interest emerges as the doctor maximizes his income

and not patient utility. To the best of my knowledge, my paper is the first one

to model communication from the patient to the doctor.

The medical literature contains statements like “payment arrangements15

could significantly undermine patients’ beliefs that their physicians are act-

ing as their agents” (Mechanic and Schlesinger, 1996) and emphasizes that

there should be no conflict of interest between patient and doctor (Emanuel

and Dubler, 1995).6 Kao et al. (1998) find that patients trust their physician

less if the physician is capitated than when he is payed on a fee for service20

basis.7 Physicians are also less satisfied with their relationships with capi-

6See McGuire (2000) for more references on this point. The focus of these papers differs

slightly from my paper as they concentrate on doctor’s own income maximization as a

reason for mistrust and diverging interests. I will abstract from this and focus direclty on

the discrepancy between welfare and patient utility caused by health insurance.
7 It should be noted that doctors’ and patients’ incentives are also not aligned under

a fee for service arrangement as a doctor has incentives to overtreat the patient, see the

discussion in section 2. However, patients appear to be less worried about overtreatment

in practice. The reasons might be that many insurance plans actively try to prevent costly

overtreatment, e.g. by utilization reviews, and also that patients do not bear the financial

risk of overtreatment because of insurance. Therefore, objectives of doctor and patient are

normally viewed to be closer in a fee-for-service contract.
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tated patients compared to their average patient (Kerr et al., 1997). My paper

contributes by formalizing why trust, interpreted as shared objectives, is vi-

tal for the patient-physician relationship. Such a formalization is interesting

for two reasons: First, it allows for both costs (less trust) and benefits (less

overtreatment) of cost incentives. Second, one can obtain results concerning5

the optimal design of health care systems, i.e. where in the health system are

aligned interests especially important and where could cost incentives improve

welfare.

The next section introduces the model and is followed by a simple numer-

ical example. This example illustrates the main points. Section 4 analyzes a10

general model and answers the question: When do cost incentives work? Two

extensions are analyzed in section 5: In the first one, the planner can cost-

lessly choose any arbitrary degree to which the doctor should take costs into

account. It is shown that the optimal degree is less than 100%. The second

extension analyzes how copayments can help to alleviate the communication15

problem. The final section concludes by discussing the results and pointing

out predictions as well as possible applications in different areas. Proofs are

relegated to the appendix.

2 Formal setting

Patient and doctor have a common prior F over the set of all possible health20

states of the patient. The set of health states is denoted by Θ. The patient

receives a private signal σp ∈ Σp about his health state. In practice this

signal can be interpreted as the symptoms a patient can report to his doctor

or as the intensity of his symptoms. The doctor receives also a private signal

σd ∈ Σd about the patient’s health. This signal can be interpreted as the result25

of the doctor’s examination, e.g. his interpretation of an X-ray photograph

or listening to the patient’s heartbeat. Given the health state, there is a
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distribution G(σp, σd|θ) of signals which is common knowledge. Put differently,

G(σp, σd|θ) gives the probabilities that a patient (doctor) receives signal σp (σd)

given a health state θ.

The timing is the following: First, the patient’s health state is determined

by nature. This health state is unknown to doctor and patient. Second,5

doctor and patient receive their signals σ = (σp, σd) which correspond to the

true health state through G. Third, the patient can send a message, e.g.

communicating his signal, to the doctor. Fourth, the doctor determines a

treatment τ from a set of available treatments. The costs of the treatment

c(τ) are paid for by the patient’s insurance.10

Utility of the patient depends only on his true health state θ ∈ Θ and the

treatment τ . In particular, a patient’s well being does in the end not depend on

the signals. For the doctor, I look at two scenarios: Either the doctor has “no

cost incentives”which means that he makes his treatment decision to maximize

the patient’s utility or he is “cost sensitive” (or “has cost incentives”) with15

which I mean that he maximizes social welfare. Social welfare is the patient’s

utility minus costs. The perspective of the paper is therefore eventually the

perspective of a (benevolent) designer of the health system, e.g. a government

or an insurance plan, who has to determine which kind of incentives he gives

to the doctor.820

I want to discuss briefly under which contract forms a doctor might max-

imize patient utility or welfare. This issue will then be neglected in the re-

mainder as it is not the main focus of the paper. While it is hardly disputed

that doctors care about their patient’s health, it is likewise undisputed that

doctors react to financial incentives, see Armour et al. (2001); Brook (2010)25

or McGuire (2000). Financial incentives can be of two kinds. First, capitation

8It will become clear that–very much in line with this design perspective–the cost function

can include more than just the costs of medication, e.g. social costs due to absence at work

or risk of infection for others. If one wants to allow for partial insurance, the cost function

c(τ) would then be the part of costs that are not borne by the insured himself.
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payments, cost saving bonuses and similar schemes give an incentive to save

costs, i.e. to reduce τ in the model. Second, fee-for-service arrangements give

an incentive to overtreat the patient as additional treatment leads to more

fees. This would be interpreted as an incentive to increase τ in the model. A

situation with–roughly–no financial incentives is the case of a salaried doctor.5

All mentioned forms of enumeration (and combinations of those) are used in

practice, see Brook (2010). Assume that a doctor cares about his patient’s

utility with weight α > 0 and about his income with weight 1. A doctor will

then maximize welfare if his contract consists of a fixed payment minus αc(τ).

A doctor maximizes patient utility if he receives a fixed payment only.10

3 A simple example

This section deals with a small numerical example which illustrates that cost

incentives can lead to lower welfare. Take Θ = {A,B,C} and Σp = Σd =

{0, 1}. In words, there are three diseases called A, B and C. Doctor and

patient will each receive one of two possible signals which are denoted by 015

and 1. For example, the patient’s signal could be whether he feels “no/little

pain” or “strong pain” while the doctor’s signal could be whether the patient’s

heartbeat is unusual or not. The prior F is given by disease A and B occurring

with probability 2/5 each and disease C with probability 1/5. The distribution

G is given in the following table:20

prior 2/5 2/5 1/5

σ A B C

(0,0) 0 0 1

(0,1) 0 4/5 0

(1,0) 1/5 1/5 0

(1,1) 4/5 0 0

The interpretation is that, given health state A, signal (σp, σd) = (1, 1)

occurs with probability 4/5 and signal (σp, σd) = (1, 0) occurs with probability
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1/5. Assume that there are three available treatments which are denoted by

a, b and c. The patient’s utility and the costs of each treatment are given in

the following table:

A B C costs

a 8 9.7 9.2 5

b 4 9 9.6 3

c 0 5 10 1

To illustrate: A patient with disease A receiving treatment a has a utility5

of 8. Treatment a costs 5. Therefore, welfare would be 8 − 5 = 3 in this

situation.

One interpretation is that “disease” C is being healthy and treatment c is

the option “no additional treatment” (the costs of 1 would be the costs of the

initial doctor visit). Treatment a is a very effective and expensive treatment10

while b is a less effective and cheaper treatment. Overtreatment reduces utility

slightly. A quick calculation shows that treatment a is welfare maximizing in

health state A where welfare is defined by patient utility minus costs. The

same is true for b in health state B and c in C.9

3.1 No cost incentives15

If the doctor has no cost incentives, the incentives of doctor and patient are

aligned. The patient will therefore communicate his true signal σp in equilib-

rium.10 The doctor can then base his decision on both signals and maximizes

9The example is a discretization of the model in section 4: The health states θ corre-

sponding to A, B and C are 10, 5, 0. The treatments a, b, c correspond to values of τ of

8, 4, 0. The utility function leading to the values above is

u(θ − τ) =

−(θ − τ) + 10 if θ − τ ≥ 0

(θ − τ)/10 + 10 if θ − τ < 0.

10In principle, there is also a pooling equilibrium in which the doctor takes only his own

signal into account and the patient sends the same message regardless of his signal. However,
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gross consumer surplus. Hence, the doctor knows the disease whenever the

signals are (0, 0), (0, 1) or (1, 1). If the signal is (1, 0), the doctor assigns equal

probabilities to disease A and B. This leads to the following optimal decisions:

(0, 0)→ c, (0, 1)→ a, (1, 0)→ a and (1, 1)→ a

Expected welfare is therefore11

W nci =
1

5
(10− 1) +

8

25
(9.7− 5) +

2

25
(8− 5) +

2

25
(9.7− 5) +

8

25
(8− 5) =

122

25
.

3.2 Cost sensitive doctor5

If the doctor is cost sensitive, his preferred decisions (if he knew both signals)

would be: (0, 0) → c, (0, 1) → b, (1, 0) → a and (1, 1) → a. Hence, there is a

conflict between the patient and the doctor whenever the signal is (0, 1): The

doctor prefers treatment b while the patient prefers a. Next, I write down the

optimal decision of the doctor if he only knows his own signal σd. If σd = 1, he10

assigns equal probability to disease A and B. Therefore, the optimal treatment

is a. If σd = 0, he assigns probability 2/9 to disease A, 2/9 to disease B and

5/9 to disease C. It is straightforward to calculate that in this case the optimal

treatment is c.

In principle, there could be two kinds of equilibrium: First, a separating15

equilibrium in which the patient truthfully reports his signal to the doctor,

i.e. the two signals are separated. Second, a pooling equilibrium in which the

patient sends the same message regardless of his signal.12

Suppose there is a separating equilibrium, i.e. the patient communicates

his signal σp truthfully to the doctor in equilibrium. The doctor will then20

this equilibrium is Pareto dominated and does not seem very realistic.
11Just to illustrate: The first term is the probability of being in state C and receiving the

signal (0, 0), i.e. 1/5 ∗ 1, multiplied with the utility of the resulting treatment c in state C,

i.e. 10, minus the costs of this treatment, i.e. 1.
12 It can be shown that there is no mixed strategy equilibrium with an outcome different

from the pooling outcome.
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implement the welfare maximizing treatment knowing both signals. If σp = 0,

the patient expects–given his signal–to get a utility of utruth = 8/13∗9+5/13∗

10 = 122/13.13 If however the patient lied and communicated σp = 1, the

doctor would implement treatment a and the patient’s expected utility would

be ulie = 8/13∗9.7+5/13∗9.2 = 1236/130. Hence, lying pays off for the agent5

and there cannot be a separating equilibrium.

Consequently, there is a pooling equilibrium in which the doctor uses only

his own signal. Welfare is then

W c =
1

5
(10− 1) +

8

25
(9.7− 5) +

2

25
(0− 1) +

2

25
(5− 1) +

8

25
(8− 5) =

1206

250
.

Since W c < W nci, cost incentives reduce welfare in this example. The

driving force behind this result are the conflicting objectives of patient and

doctor which result in a break down of communication. Nevertheless, costs are

lower if the doctor is cost sensitive since the signal (1, 0) leads to the low cost10

treatment c while a is prescribed without cost incentives.

3.3 Variation I: Restricting the choice set

Interestingly, there is an easy fix in this example: Suppose, the health authority

does not clear treatment b. Hence, treatment b is not available. But then there

is no conflict between doctor and patient as even a cost sensitive doctor will15

now prescribe a if the signal (0, 1) occurs. Unfortunately, this means that

cost incentives simply do not matter/work: Every signal leads to the same

treatment with and without cost incentives.14 Furthermore, this trick will

not always work: Amend the example above with a disease D which can be

identified with certainty (so there would be a signal (2, 2) which occurs if and20

13Given σp = 0, the patient assigns probability 8/13 to health state B with signal σ =

(0, 1) which leads to treatment b. With the counter probability 5/13, he expects state C

with signal σ = (0, 0) and treatment c.
14This point is more general and also holds in the model analyzed in section 4 if one adds

the possibility to restrict the treatment set.
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only if the health state is D). If in this state D treatment b is by far superior

to all other treatments, a health authority banning treatment b would reduce

welfare.

3.4 Variation II: Increasing costs

The negative information effect of cost incentives can be so strong that costs5

can be higher under cost incentives. To see this, change the example above by

changing the ex ante probability of disease C from 1/5 to pc < 1/5 and assign

the ex ante probability (1 − pc)/2 to sickness A and B. Note that this does

not change decisions without cost incentives as it is always perfectly known

whether one is in state C or not.10

If, however, pc is small enough and the doctor knows only his own signal, he

will prescribe treatment a instead of treatment c (or b) when he receives signal

σd = 0. This inevitably leads to higher costs than without cost incentives:

Now a is always prescribed while c was prescribed without cost incentives for

signal σ = (0, 1). Note that a lower pc will make the incentive constraint15

of a separating equilibrium even tougher, i.e. reducing pc does not lead to

a separating equilibrium. It turns out that in the example a is the optimal

treatment for σd = 0 if pc < 0.029, i.e. if pc < 0.029 costs with cost incentives

are higher than without.

This result is slightly reminiscent of the empirical results concerning the20

cost effects of managed care. One feature of many managed care plans are

cost incentives for doctors, e.g. cost control boni or capitation payment. As

Glied (2000) reports in his survey, results on the cost effect of managed care

are however inconclusive: Some studies report higher costs, some report lower

costs or no cost difference between managed care and traditional care plans.25
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4 Model and results

This section uses a more general model to analyze the setting and effect de-

scribed before. There are two reasons why this is desirable: First, one has to

verify that the effects described above are not due to the discrete nature of

the example. Second, this will allow to determine under which circumstances5

cost incentives are welfare maximizing and therefore have implications for the

optimal design of a health care system.

The patient’s message in the example above is “cheap talk”: The message

itself does not have direct payoff implications. Only the treatment decision is

relevant for the patient’s utility and welfare. The canonical model for cheap10

talk games is Crawford and Sobel (1982). To fit the health sector, the informa-

tion structure of Crawford and Sobel (1982) has to be amended as described

below.

I assume that health state θ is a real number from some bounded interval

and also σp, σd and τ are assumed to be real numbers.15 Without loss of15

generality take Θ = [0, 1]. Higher signals are assumed to imply higher expected

states. To make this formal define by H(θ|σp, σd) the cumulative distribution

function which gives the probability that the state is below θ given signals σp

and σd. This distribution is derived from F (θ) and G(σp, σd|θ) using Bayes’

rule. The assumption is that H(θ|σp, σd) first order stochastically dominates20

H(θ|σp′, σd′) whenever σd ≥ σd
′
and σp ≥ σp′. In words, a higher signal implies

that higher health states are more likely to occur.16

Patient utility u(θ − τ) is a function of “difference” between health state

and treatment. It is assumed that the patient is fully insured, i.e. costs of

treatment do not enter his utility function. Assume that u(θ − τ) is two25

15Restricting τ to some interval, e.g. R+ is possible as explained in footnote 23. Drawing

the signals from some closed subset of R simplifies matters, see assumption 1.
16 If G has a density g which is differentiable in σ, the stochastic dominance assumption

can be written as
∫ θ
0
gσi (σ|θ) dF (θ)∫ θ

0
g(σ|θ) dF (θ)

≤
∫ 1
0
gσi (σ|θ) dF (θ)∫ 1

0
g(σ|θ) dF (θ)

for each i ∈ {p, d}, θ ∈ Θ, σ ∈ Σp × Σd.
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times continuously differentiable, strictly concave and attains its maximum

at 0. Put differently, patient utility is maximized if τ = θ and is lower the

further away treatment τ is from this ideal treatment. A treatment above

(below) θ corresponds to overtreatment (undertreatment) from the patient’s

point of view. It is not assumed that u(·) is symmetric and therefore over-5

and undertreatment might affect utility in different ways. The cost function

c(τ) is strictly increasing and marginal costs are bounded away from 0, i.e.

c′(τ) ≥ δ ∀τ for some δ > 0. This last assumption implies that the patient’s

utility is never aligned with the social objective or, put differently, the patient

always prefers a more expensive treatment than socially optimal because he is10

insured. If there was no such conflict, cost incentives would simply not matter

for the outcome. Consequently, introducing cost incentives could not even help

to reduce costs.

The solution concept is Perfect Bayesian Nash Equilibrium. After observ-

ing his signal σp a patient updates his beliefs about his health state θ and15

about the doctor’s signal. Given σp, a strategy for the patient is a probability

distribution over Σp denoted by q(m|σp).17 This distribution gives the proba-

bility of reporting m ∈ Σp when the true signal is σp. For illustration purposes,

think of a partition equilibrium in which patients with signals in, say, [0.3, 0.4]

are bunched, i.e. send the same message. In this case q(m|σp) could be a20

uniform distribution over [0.3, 0.4] for all σp ∈ [0.3, 0.4]. Given his signal σd

and the message he receives from the patient, the doctor updates his beliefs

about the health state of the patient θ and chooses his preferred treatment.

For simplicity, I assume that u(θ − τ) − c(τ) is strictly concave in τ which

implies that there is a unique socially efficient treatment τw. This assumption25

is, for example, satisfied if c(τ) is linear or convex. Hence, the doctor will

always have a unique preferred treatment which I denote by τ d(m,σd). The

strategies (q(m|σp), τ d(m,σd)) form an equilibrium if:

17For notational convenience q(m|σp) is a probability density function but mass points

can be easily accommodated.
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1. For each σp, q(m|σp) is a distribution, i.e.
∫ 1

0
q(m|σp) dm = 1, and if

q(m∗|σp) > 0 then m∗ ∈ argmaxm
∫ 1

0

∫
Σd u(θ − τ d(m,σd)) dP (θ, σd|σp)

where P (θ, σd|σp) is the distribution of (θ, σd) derived from G(σp, σd|θ)

and F (θ) conditional on observing σp and using Bayes’ rule.18

2. For each m and σd, treatment maximizes the doctor’s objective. For5

the cost sensitive doctor, this means that τ d(m,σd) = argmaxτ
∫ 1

0
[u(θ−

τ)− c(τ)] dH(θ|m,σd) where with a slight abuse of notation H(θ|m,σd)

is the distribution of the health state conditional on observing σd and

m using by Bayes’ rule (given G(σp, σd|θ), F (θ) and q(m|σp)). Without

cost incentives τ d(m,σd) = argmaxτ
∫ 1

0
u(θ − τ) dH(θ|m,σd).10

In words, the first condition says that the patient reports with positive proba-

bility only signals maximizing his utility given the strategy of the doctor. The

second condition establishes that the doctor uses an optimal strategy given the

patient’s equilibrium behavior.

I define a monotone partition equilibrium as an equilibrium characterized15

by a partition {s0, s1, . . . , sn} of Σd such that (i) q(m|σp) = q(m|σp′) if and

only if σp and σp′ belong to the same element of the partition and (ii) the

support of q(m|σp) and q(m|σp′) is non overlapping if σp and σp′ belong to

different elements of the partition.

The focus of the paper is on monotone equilibria as non-monotone parti-20

tion equilibria, as analyzed in Chen (2009), appear unnatural in patient doctor

communication. Put differently, it is easy to imagine that patients who observe

symptoms for two or three days send the same message. However, it is hard

to imagine that these patients send the same message as patients observing

symptoms for three weeks while patients with one or two weeks send a differ-25

ent message. However, the results of this section still hold if non-monotone

partition equilibria exist.

18Note that the patient takes expectations not only over the health state but also over the

doctor’s signal because σd will influence the doctor’s treatment decision.

15



The following technical assumption proves to be useful for the analysis.

Note that the boundedness part is automatically satisfied if Hσp is continuous

and the signal σ is drawn from a closed set, i.e. if Σp and Σd are closed

intervals.

Assumption 1. H(θ|σp, σd) is differentiable in σp and |Hσp(θ|σp, σd)| is bounded5

from above by some M > 0. At all states where H(θ|σp, σd) has a density

h(θ|σp, σd), this density is also differentiable in σp and hσp is bounded.19

Put differently, beliefs about the true health state do not change too sharply

if the patient’s signal changes marginally. Note that slightly irregular distri-

bution, e.g. with mass points at a “healthy state” θ = 0, can be allowed.10

Assumption 1 simplifies the analysis by ensuring that the doctor’s treatment

decision is differentiable in the patient’s signal. In fact, it implies that there

is an upper bound on how strongly the doctor’s treatment decision reacts to a

marginal change in σp (in a hypothetical situation in which the doctor knows

the patient’s signal). Loosely speaking, this means that a patient who exag-15

gerates his signal a little bit will–as a consequence–only get a slightly higher

treatment. See the proof of theorem 1 for details.

The game is then similar to the information transmission model of Crawford

and Sobel (1982) with three additional twists: First, the doctor (receiver in

the language of Crawford and Sobel) receives a signal while he is completely20

ignorant in Crawford and Sobel (1982). Second, the patient (sender) does

not know the state of the world. Instead, he has a noisy signal. Third, the

divergence of interests between doctor (receiver) and patient (sender) is not

fixed but depends on the treatment (decision). The following theorem extends

results from Crawford and Sobel (1982) to this setting.25

19 This assumptions is satisfied if G has a density g which is differentiable in σp and gσp

is bounded.
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Theorem 1. With cost incentives, there exists no separating equilibrium. Mono-

tone partition equilibria exist. All but the first element of the partition have

a minimum length κ which is bounded away from zero. If Σp is bounded, the

number of elements in the partition is bounded from above.

Proof. see appendix A.15

The intuition is the following: In equilibrium, a patient cannot tell his

true signal to the doctor. If he did, the doctor would prescribe a treatment

that is “too cheap” from the patient’s point of view (as the patient does not

care about costs). Hence, the patient would have an incentive to overstate

his signal. In practice, this would mean to claim additional symptoms or to10

overstate the intensity of existing symptoms. What happens in equilibrium is

that the patient’s signal range is partitioned and the patient reports in which

element of the partition his signal lies. The doctor does not know the precise

signal of the patient but gets a rough idea which he takes into consideration

when choosing the treatment. Because of the partitioning, a patient can no15

longer overstate his signal “a little bit”. If the patient deviated by reporting a

higher element of the partition, he would get a substantially higher treatment.

In equilibrium he will not deviate because he expects this treatment to be too

high. One could interpret this in the following two ways: First, a patient does

not want to report symptoms that are too much different from the real ones as20

this could mislead the doctor, i.e. result in treating the wrong illness. Second,

extreme overstatement of symptoms could result in too strong medication with

severe side effects. Hence, the patient does not want to overstate his existing

symptoms too much.

It is also clear that the partition cannot be arbitrarily fine: If the elements25

are too small, then overstating one’s signal “a little bit” is again possible.

This explains the minimum length statement in the theorem. The minimum

element length immediately implies that the number of elements is bounded if

the interval from which patient signals are drawn is bounded.
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The mechanism through which cost incentives can harm welfare is the same

as in the example of section 3: If the objectives of doctor and patient are differ-

ent, the patient has an incentive to use his information strategically to get the

more expensive treatment he wants. In equilibrium, the doctor will have less

information (partitioning of signal range) compared to the situation without5

cost incentives. Consequently, he is more prone to make inappropriate treat-

ment decisions. In short, there are two effects when introducing cost incentives:

First, costs are taken into account which, ceteris paribus, decreases costs and

increases welfare. Put differently, the doctor stops prescribing excessively ex-

pensive treatments. Second, communication and therefore the information of10

the doctor is worse. Hence, treatment decisions are less accurate which re-

duces welfare. Whether the cost or the information effect dominates is ex ante

unclear. The following propositions show that in two extreme cases the cost

effect dominates and therefore cost incentives lead to higher welfare than no

cost incentives.15

Proposition 1. Welfare is higher with cost incentives if the doctor’s signal

is sufficiently informative. That is, given G(σp, σd|θ), for ε > 0 small enough

cost incentives lead to higher welfare than no cost incentives if the doctor’s

signal is drawn from εG(σp, σd|θ) + (1− ε)1θ where 1θ is a distribution putting

all probability mass on θ. Cost incentives lead also to higher welfare if the20

patient’s signal is sufficiently uninformative, i.e. for ε > 0 small enough if the

patient’s signal is drawn from εG(σp, σd|θ)+(1−ε)Uθ where Uθ is the uniform

distribution over [0, 1].

Proof. see appendix A.1

This result is intuitive: If the doctor is able to determine the patient’s25

health state almost on his own, i.e. without knowing the patient’s signal, then

the patient’s signal is useless. Therefore, the information effect of introducing

cost incentives is small while the cost effect is still there.

One interpretation of proposition 1 is that cost incentives become eventually
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more attractive with medical progress. This holds at least true if medical

progress implies better diagnosis possibilities for doctors. Consequently, one

might then expect to see more cost incentive elements in health care systems

over time.

A second interpretation is that some specialists optimally should have cost5

incentives while others should not. A radiologist or a trauma surgeon will

normally base his decisions on his own examination and less on the patient’s

report. This might be less true for an internist or a general practitioner.

A related third interpretation is that an optimal health care system should

incorporate selective cost incentives. More precisely, cost incentives should be10

applied for the treatment of diseases where the doctor’s information is relatively

more important than the patient’s information.

Proposition 2. Cost incentives lead to higher welfare than no cost incentives

if social and private objectives differ sufficiently. That is, for any given infor-

mation structure and cost function c(τ) there exists an α > 0 such that cost15

incentives lead to higher welfare than no cost incentives under the cost function

αc(τ).

Proof. see appendix A.1

The intuition is that the cost effect will become dominant if (marginal) costs

are high enough. Consequently, the information loss due to cost incentives is20

negligible compared to the cost effect.

In line with previous interpretations cost incentives are especially useful for

specialists dealing with high cost treatments on a regular basis. Also diseases

involving high cost treatment on a regular basis are especially well suited for

cost incentives.25

To conclude this section, I want to point out that the tradeoff between

information and cost effect is also present in simpler models. Put differently,

the model structure with noisy signals for patient and doctor reflects the reality

in the health care sector but is not necessary to generate the result that no
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cost incentives can be optimal for welfare. To verify this claim, I show that

no cost incentives are welfare optimal in the archetypical cheap talk example

introduced by Crawford and Sobel (1982).

Example. Health states are uniformly distributed on [0, 1]. The patient has

perfect knowledge of the health state while the doctor’s signal is completely5

uninformative. Assume that the patient’s utility function is a quadratic loss

function, i.e. u(θ, τ) = −(θ − τ)2, and that the cost function is linear in

treatment, i.e. c(τ) = ατ . Given the information that σp (which is now the

true health state) is in the interval (s1, s2), the optimal treatment decision for

a doctor with cost incentives is τ = s1+s2−α
2

. With α = 1/10 the model is10

equivalent to the example in Crawford and Sobel (1982). It is shown there

that the finest possible equilibrium partition is (0, 2/15, 7/15, 1), i.e. a patient

will report whether his signal is in [0, 2/15) or in [2/15, 7/15) or in [7/15, 1].

Straightforward calculations show that expected consumer utility in this parti-

tion equilibrium is −0.01058 while expected costs are 0.045. Hence, expected15

welfare is −0.01058− 0.045 = −0.05558.

Without cost incentives the patient will truthfully reveal his signal and there-

fore communicate the true health state to the doctor. Consequently, τ = θ and

consumer welfare is 0. Expected costs are 1
10

0.5 = 0.05 which results in ex-

pected welfare of −0.05. Therefore, no cost incentives lead to higher welfare20

than cost incentives.

5 Extensions

This section considers two extensions. In these extensions, I will concentrate on

the finest monotone partition equilibrium. To ensure uniqueness of the finest

equilibrium partition, a standard monotonicity condition is assumed which is25

explained in detail in appendix A.2.
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5.1 Degree of cost incentives

Say, the planner could set the precise extent to which the doctor takes costs into

account: The planner sets β ∈ [0, 1] and the doctor maximizes the expected

value of u(θ − τ)− βc(τ) with his treatment decision. The following theorem

says that neither β = 1 nor β = 0 will be optimal in this setting. Hence, a5

welfare maximizing planner does not want a welfare maximizing doctor.

Theorem 2. Assume that the doctor’s signal is not perfect. Then the optimal

degree of cost incentives is interior, i.e. the optimal β is neither 0 nor 1.

Proof. see appendix A.2

The idea is the following: Say β = 1 induces the partition {s0, s1, . . . , sN}.10

Now suppose β is decreased marginally (starting from β = 1) and assume for

now that the partition remained the same: Then the doctor would prescribe

higher treatments in response. As he was a welfare maximizer before this

change, this will only have a second order effect on welfare (if the partition did

not change). However, there will be a first order information effect: Because15

the doctor prescribes higher treatments, the interests of patient and doctor

differ less. Hence, the equilibrium partition will be finer. Roughly speaking,

the patient trusts the doctor more when β is decreased and is therefore willing

to transmit more information. For β = 0, the argument works in the opposite

direction: There is no first order information effect but a first order cost saving20

effect from increasing β.

Note that there is a second interpretation of the first/second order argument

above: Take some fixed β > 0. The argument above says that a doctor

maximizing u − βc would like to commit to a lower β, say β̃ < β. Such

a commitment would allow the doctor to achieve a higher value of u − βc.25

However, any such commitment is difficult because the doctor’s signal is not

observable. Put differently, after receiving the patient’s message the doctor

has an incentive to implement the treatment τ maximizing u − βc. He can

then always claim that τ would maximize u− β̃c but that he received a lower
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signal than he actually did, i.e. the patient will not even realize the deviation.

Nevertheless, one could interpret doctors’ emphasis of patient advocacy and

even the Hippocratic oath as attempts to commit to a low β̃.

5.2 Demand side cost sharing

Copayments and deductibles are commonly used instruments in health insur-5

ance. The standard argument for the use of these instruments is moral hazard,

i.e. patients might overdemand health care without copayments. This argu-

ment ignores the fact that most care has to be prescribed by a doctor whose

incentives might differ from the patient’s preferences. Put differently, this ar-

gument assumes that the doctor follows the patient’s wishes in his prescription10

behavior.

The model of this paper suggests that the moral hazard argument might be

valid in an indirect way: Copayments imply that the patient takes costs par-

tially into account. Objectives of patient and cost sensitive doctor can therefore

be better aligned with copayments. This will improve communication thereby15

increasing welfare. The mechanism is similar to the moral hazard argument as

the copayments reduce the preferred treatment of the patient. However, the

welfare improvement stems not directly from this demand reduction but from

the effect it has on communication. If the doctor does not have cost incentives

and acts in the patient’s interest, the standard moral hazard argument applies20

directly.

Obviously, copayments have the downside of exposing the patient to finan-

cial risk. As risk aversion is the reason for the existence of insurance in the first

place, copayments cannot be too high. The optimal level of copayments has

to balance this negative risk effect with the positive effect on communication.25

To demonstrate these ideas in the model, a financial dimension has to be

added. Assume that the patient has utility v(w−p−γc(τ))+u(θ−τ) where v

is an increasing and concave function, w is income, p is the insurance premium
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and γ is the copayment rate.20 We are interested in the structure of the welfare

maximizing insurance contract under the constraint that the insurance breaks

even in expectation, i.e. p = (1 − γ)E[c(τ)]. This insurance contract is in

itself interesting for normative reasons. Furthermore, this contract would be

offered in the equilibrium of a perfectly competitive insurance market. The5

following proposition assumes the same monotonicity condition as theorem 2

and confirms the intuition above.

Proposition 3. Copayments are strictly positive in the welfare maximizing

insurance contract, i.e. γ > 0.

Proof. see appendix A.210

It should be noted that theorem 2 still holds also in this setup. Optimally,

health markets should therefore include copayments and give doctors less than

full cost incenitves.

5.3 Two-sided communication

Chen (2009) introduces two sided communication–the doctor can send a cheap15

talk message to the patient before the patient communicates his message–in

a setting in which the patient knows the state with certainty and the doctor

has a binary signal. In this setting, there can be equilibria with meaningful

communication from the doctor to the patient. Intuitively, a doctor with

a high signal wants to communicate this as the patient will be less afraid20

of undertreatment. In certain circumstances, Chen (2009) shows that also a

doctor with a low signal might want to report the low signal truthfully (roughly

speaking this is true if reporting a high signal would change the information

parition too much).

In the setting of this paper, where the patient has a noisy signal, there is25

an additional effect of two-sided communication. A doctor communicating a

20For simplicity, a fixed copayment rate that does not depend on treatment is used here.

See appendix A.2 for extending the result below to more flexible copayment schemes.
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high signal does not only communicate that he will prescribe a high treatment

but also that high states are likely. Put differently, the message of the doctor

contains information not only about his prescription behavior but also about

the state. The two kinds of transmitted information affect the patient’s will-

ingness to communicate in opposite ways: If the patient believes that higher5

states are more likely, he has more incentives to exaggerate his signal. If he

believes that the doctor will prescribe a high treatment, he has less incentives

to exaggerate.

While a complete characterization of the two-sided communication case is

beyond the scope of this paper, it seems intuitive that the previous results still10

hold in a two-sided communication framework. This is obvious when the doctor

cannot communicate truthfully in equilibrium. If partial communication from

doctor to patient is possible, the message of the doctor will simply update the

beliefs of the patient. Then a one-sided communication situation similar to the

one analyzed in this paper emerges as a subgame. This observation implies,15

for example, that theorem 1 and propositions 1 and 2 hold in the two-sided

communication game because they hold in any subgame following any message

by the doctor. The proofs of theorem 2 and proposition 3 will go through as

long as (i) the monotonicity condition holds and (ii) a marginal change in the

parameter (β and γ respectively) does not change the communication from the20

doctor to the patient in a discontinuous fashion.

6 Discussion and conclusion

Introducing cost incentives for doctors turns out to be a double-edged sword:

On the one hand, taking costs into consideration should avoid the prescription

of too expensive treatments. On the other hand, misalignment of patient’s25

and doctor’s incentives will hamper communication between the two: The

patient has an incentive to exaggerate and in equilibrium this leads to signal

bunching. Consequently, the doctor has worse information and is less likely
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to assess the patient’s health state correctly. Knowing about the uncertainty

he might even choose more expensive treatments to be on the safe side. In a

numerical example, this can lead to higher costs than under no cost incentives

(see section 3).

If costs are very high or if the doctor is able to assess the health state very5

accurately given only his signal, cost incentives are the welfare maximizing

policy. This shows that an optimal health care system will use different de-

grees of cost incentives in different circumstances. In practice, cost incentives

could differ across diseases and across specialists. However, it is shown that

full cost incentives, i.e. doctors take all costs into account, are not optimal.10

Copayments can help to mitigate the communication problem as they bring

the objectives of cost sensitive doctor and patient closer together. Although

copayments have the obvious disadvantage of exposing the risk averse patient

to risk, they are strictly positive in the welfare maximizing insurance contract.

The model can also be interpreted as a formalization of the idea that trust15

is important in the patient-doctor relationship. This idea is commonplace in

the medical literature and was informally discussed in Arrow (1963). Surpris-

ingly, the health economics has largely ignored this topic since then. As in

definitions of trust, see Bhattacharya et al. (1998), the model describes a situ-

ation where one person (patient) relies on the future action of another person20

(doctor). Trust can then be defined as a feeling of confidence of the former

(patient) that the latter (doctor) will act in his (patient) interest. Intuitively, a

patient should be confident that the doctor acts in his interest if both share the

same objectives.21 Therefore, cost incentives reduce trust in the patient-doctor

relationship. In this interpretation, the model gives one explanation why trust25

is important in medical care: Less trust corresponds to worse communica-

tion, less information transmission and a worse diagnosis. Put differently, the

21In the classification of Gilson (2003), this is trust in the strategic perspective. The alter-

native altruistic perspective views trust as an institution enabling cooperation in situation

where a party could profitably deviate from cooperation.
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information effect identified earlier can be interpreted as a trust effect.

In some sense, the model is a best case scenario for the benevolent designer:

He can freely set the doctor’s incentives without incurring any costs. In prac-

tice, setting up an incentive scheme for doctors might actually be costly. Doc-

tors might also not respond immediately because of previously formed habits.5

It is therefore even more remarkable that the designer might not want to give

cost incentives to the doctor in the model of this paper (and sets less than full

cost incentives when he can choose the precise extent of cost incentives).

The model gives several predictions. Quality of diagnosis should decrease

after an introduction of cost incentives for doctors: For example, patients with10

a given diagnosis-treatment pair will be treated less successfully (e.g. take

longer to recover) because some receive the wrong treatment due to a wrong

diagnosis. This effect should be more pronounced for specialists and diseases

where patient input is vital for the diagnosis. If trust reflects the willingness

to communicate, one should expect patient’s trust in their doctor to be lower15

when their doctor has cost incentives. This last result is indeed confirmed by

the empirical health literature, see for example Kao et al. (1998).

More abstract, a welfare maximizing sponsor (say a benevolent government)

might prefer a decision maker (doctor) who shares his preferences not with the

sponsor but with the patient. In a broader context an agent might benefit20

from surrendering his interests when information provision by another party

is important. This could have applications in other contexts like mediation: A

mediator with decision power who shares the interests of another party might

be preferable to making the decision oneself.

In general, shared objectives prove to be vital for information provision.25

Patient advocacy can therefore be seen as an institutional response to the im-

portance of information provision by patients. Consequently, one might expect

similar institutions to emerge whenever information provision by affected par-

ties is vital. In this context, the relationship between a lawyer and his client

could serve as an additional example.30
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A Appendix

A.1 Proofs

Proof of theorem 1: The proof proceeds in a number of steps. The first

three steps establish that there cannot be a separating equilibrium, i.e. there is

no equilibrium in which a patient always reports his true signal. Consequently,5

patients with some signals are bunched together. Patients in one “bunch” (one

element of a partition of the signal range) send the same report to the doctor.

Steps four and five establish that each element of a partition must have a

minimum length, i.e. the partition cannot be arbitrarily fine.

The first step is to show that there exists a b > 0 such that argmaxτ
∫ 1

0
[u(θ−10

τ)− c(τ)] dH(θ|m,σd)+ b ≤ argmaxτ
∫ 1

0
u(θ− τ) dH(θ|m,σd) for a given equi-

librium strategy q(m|σp); i.e. the patient would opt for an at least b higher

treatment than a cost sensitive doctor if he chose (and had the same informa-

tion). This follows from the first order conditions corresponding to the two

argmax expressions15

∫ 1

0

−u′(θ − τ) dH(θ|m,σd) =

c
′(τ)

0

. (1)

The left hand side of (1) is continuous in τ and also strictly decreasing in τ .

Since c′(τ) ≥ δ > 0 and u′(·) is continuous, the claim follows. This argument

is for a given (m,σd) but the infimum of all these b over (m,σd) will also be

strictly positive. To establish this, it is sufficient to show that the derivative

of the left hand side of (1) with respect to τ is bounded:22 Since u′(θ− x) > 020

for x ≥ 1 and any θ ∈ [0, 1], the optimal treatment is bounded from above by

1. Furthermore, the optimal treatment is bounded from below by τ solving

u′(−τ) = c′(τ), i.e. the optimal treatment if the doctor knew that θ = 0.

22Just to illustrate why boundedness is sufficient: Say the derivative of the left hand side

of (1) is between 0 and −B. Since this left hand side is differentiable, the two τ solving (1)

with the right hand side equal to zero and equal to c′(τ) have to differ by at least δ/B.
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Therefore −1 ≤ θ− τ ≤ 1− τ . By the continuity of u′′(·) and the compactness

of [−1, 1 − τ ], u′′(·) is bounded on this interval. Consequently, the derivative

of the left hand side of (1) is a weighted (by the distribution H(·)) average of

a bounded function and therefore bounded. Denote by B > 0 such a bound

on the derivative of the left hand side of (1). Then we can choose b = δ/B.23
5

Second, the patient prefers a slightly higher treatment than a cost sensitive

doctor prescribes in a hypothetical separating equilibrium. From the first step

and the strict concavity of u(·), it follows that any treatment in (τ d, τ d + b)

yields a higher expected utility for the patient than τ d.

Third, in a hypothetical separating equilibrium the patient attains a higher10

utility by misrepresenting slightly upwards as the doctor will increase his de-

cision uniformly continuously in σp. The implicit function theorem gives for a

hypothetical separating equilibrium

dτ d

dσp
=

∂
∫ 1
0 −u

′(θ−τ) dH(θ|σp,σd)

∂σp

−
∫ 1

0
[u′′(θ − τ)− c′′(τ)] dH(θ|σp, σd)

. (2)

The denominator is obviously positive as it is (−1) times the second order

condition of the doctor’s maximization problem. The numerator is positive as15

well because of stochastic dominance: As −u′(θ − τ) is a strictly increasing

function of θ, we have
∫ 1

0
−u′(θ − τ) dH1(θ) >

∫ 1

0
−u′(θ − τ) dH2(θ) whenever

H1(θ) first order stochastically dominates H2(θ). Since H(θ|σp′, σd) first order

stochastically dominates H(θ|σp, σd) whenever σp′ > σp, the numerator has to

be positive. The uniform continuity follows from the boundedness of 2: The20

numerator is bounded by assumption 1 and the fact that u′(θ− τ) is bounded

on the relevant range. The strict concavity of the doctor’s program implies that

the denominator is strictly bounded away from zero.24 By uniform continuity,

23If the treatment is restricted to be larger than, say, 0, the argument still holds true as

long as H(0|0, 0) < 1. A patient will then always desire a treatment that is strictly bounded

away from 0. Therefore, interests of patient and doctor are not aligned even if the constraint

τ ≥ 0 is binding.
24To be precise, this follows as the treatment range is bounded by τ and 1. On this closed
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misrepresentation can be chosen small enough to prevent an “overreaction” by

the doctor.

Consequently, there cannot be a separating equilibrium. The same argu-

ment shows that also locally, i.e. on some subinterval of the patient’s signal

range, there cannot be a perfect separation of types, i.e. patient signals have5

to be bunched in equilibrium.

Fourth, in a partition equilibrium communicating a higher partition ele-

ment will result in a higher treatment decision. This follows from the fact

that higher signals σp indicate higher health states θ and the doctor’s optimal

treatment decision is increasing in θ. Formally speaking, H(θ|(s1, s2), σd) first10

order stochastically dominates H(θ|(s′1, s′2), σd) whenever s′1 < s′2 ≤ s1 < s2.

Fifth, in a partition equilibrium there exists a minimum length κ > 0 of

each (but the first) partition element. It was shown earlier that the optimal

treatment decision of a doctor is uniform continuous in σp (in a hypothetical

separating equilibrium). Therefore, there exists a κ > 0 such that optimal15

treatment decisions differ by less than b for all σp and σp′ with |σp−σp′| < κ (in

a hypothetical separating equilibrium). Now suppose by way of contradiction

that there was a partition element (s0, s1) with s1 − s0 < κ. By the definition

of κ and b, a patient with signal σp = s0 will (in expectation) strictly prefer the

cost sensitive doctor’s separating treatment decision for type σp = s1 to the20

separating treatment decision for type σp = s0. By concavity of u(·), he will

also prefer a cost sensitive doctor’s separating treatment decision for all types

σp ∈ (s0, s1) to his own. By continuity, the same holds for patients with a signal

s0 − ε for some ε > 0 small enough. Clearly, a cost sensitive doctor receiving

the message (s0, s1) will assign a treatment between the optimal separating25

treatment for σp = s0 and for σp = s1. Therefore, a patient with signal s0 − ε

will prefer the message (s0, s1) to any message m ⊂ [0, s0].

Step five and boundedness of the patient’s signal range imply that the

and bounded treatment range the maximum of the second derivative exists and constitutes

the bound away from 0.
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number of partitions in any partition equilibrium is bounded.

A one-element-partition equilibrium (“babbling equilibrium”) in which all

σp are pooled exists always. This proves existence of partition equilibria.

Proof of proposition 1: Denote the doctor’s beliefs over states θ (de-

rived by Bayes’ rule) given a signal drawn from εG(σp, σd|θ) + (1 − ε)1θ by5

k(θ, ε|σd). Note that these beliefs are continuous in ε. For ε = 0, the doc-

tor has full information and therefore the welfare maximum is attained with

cost incentives. As c′(τ) > 0, decisions under no cost incentives differ from

decisions with cost incentives. Consequently, welfare with cost incentives is

strictly higher than without cost incentives if ε = 0. As beliefs (and therefore10

treatment decisions and welfare) are continuous in ε, it follows that even in the

babbling equilibrium welfare with cost incentives is higher than welfare with-

out cost incentives for ε > 0 small enough. With cost incentives welfare in any

partition equilibrium will be at least as high as in the babbling equilibrium.

This implies the first part of the proposition.15

For the second part, note that H(θ|σp, σd) does not depend on σp if ε = 0.

Consequently, no information is lost when switching to cost incentives. Taking

costs into account makes cost incentives strictly superior as c′(τ) > 0. By

continuity of H(θ|σp, σd) in ε, the same conclusion holds for ε > 0 small enough

(for the babbling equilibrium and therefore even more so for other partition20

equilibria).

Proof of proposition 2: Since c′(τ) ≥ δ > 0, there exists an α such that

−u′(1)− αc′(0) ≤ 0.

This implies that the welfare maximizing treatment decision τ is non-positive

for any signal/message under the cost function αc(τ). Without cost incentives

τ ≥ 0 and τ(σp, σd) > 0 with strictly positive probability as∫ 1

0

−u′(θ) dH(θ|σp, σd) > 0

whenever H(0|σp, σd) < 1. Consequently, welfare is lower without cost incen-

tives compared to the simple policy τ = 0 (regardless of the signal) under cost
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function αc(τ). A cost sensitive doctor will improve on this simple policy by

using the information he has, i.e. σd. Consequently, cost incentives lead to

higher welfare than no cost incentives under the cost function αc(τ).

A.2 Proofs Extensions

This section gives the proofs for theorem 2 and proposition 3. I assume for sim-5

plicity that patient’s signals are drawn from the interval [0, 1] and that G and F

have strictly positive densities. To make comparisons between different levels of

cost incentives meaningful, this section assumes that the finest equilibrium par-

tition is the market outcome. In an equilibrium partition {0, s1, . . . , sn−1, 1},

each si with i = 1, . . . , n−1 has to be indifferent between the elements (si−1, si)10

and (si, si+1).25 Using this indifference condition and the value s1, one can cal-

culate s2. Given s2 one calculates s3 using the indifference condition and so

on. Following Crawford and Sobel (1982), I will call the result of this calcu-

lation procedure starting with s1 a forward solution. Equivalently, one could

start from sn−1 and calculate sn−2 using the indifference condition. Then one15

continues with sn−3 etc.. The result of this will be called a backward solution.

In this section, I use the monotonicity condition that was introduced in

Crawford and Sobel (1982) and is often used in the cheap talk literature, see

Chen (2009) for a recent example in a related framework.26

(M) For a given cost function and β, if s and s̃ are two forward solutions20

with s0 = s̃0 = 0 and s1 > s̃1, then si > s̃i for all i ≥ 2.

(M’) For a given cost function and β, if s and s̃ are two backward solutions

with sn = s̃ñ = 1 and sn−1 > s̃ñ−1, then sn−i > s̃ñ−i for all i ≥ 2.

This regularity condition ensures that for a given n, there is at most one

equilibrium partition with n elements. This means that the finest equilibrium25

25To shorten notation I write “each si” instead of “a patient with a signal σp = si for some

i = 1 . . . n− 1”.
26The following arguments bear some similarity with theorems 3-5 in Crawford and Sobel

(1982) which are shown under a similar monotonicity condition.
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partition is uniquely defined.

A.2.1 Interior cost incentives are optimal (Proof of theorem 2)

This subsection formally shows that a social planner optimally chooses an

interior level of cost incentives.

So, a setting where the planner can set β and the doctor maximizes u− βc5

is analyzed. It will be shown that the optimal β is below one.

To analyze whether β = 1 is optimal, it is first necessary to determine how

the partition changes when β is decreased.

Lemma 1. If β is decreased and the number of elements in the equilibrium

partition does not change, then si increases for all i = 1 . . . , n− 1.10

Proof. A lower β implies higher treatment τ for a given partition element

and doctor signal. Hence, a patient with a given signal in a given partition

element will expect a higher treatment if β is lower. Take βl < βh with

corresponding equilibrium partitions {0, sj1, . . . , s
j
n−1, 1} where j = h, l.

The first result is the following: If sli ≤ shi for some i, then the same holds15

for all smaller i. Take i as the highest i < n where sli ≤ shi . Now, let us work

backwards: sli is indifferent between (sli−1, s
l
i) and (sli, s

l
i+1). The proof moves

from the indifference condition of sli to the indifference condition of shi in three

steps: (i) changing sli+1 to shi+1, (ii) changing from sli to shi and (iii) changing

from βl to βh. In all steps, the lower bound of the lower partition element–sli−120

at the beginning–has to be increased to keep indifference. This shows that

sli−1 < shi−1. The statement above follows then by induction.

(i) Since sli+1 > shi+1, sli will prefer (sli, s
h
i+1) over (sli−1, s

l
i).

27 Therefore,

there is an ŝi > si−1 such that si is indifferent between (ŝi, s
l
i) and (sli, s

h
i+1).

27Intuitively, si is indifferent between (sli−1, s
l
i) and (sli, s

l
i+1) because he is undertreated

in the former and overtreated in the latter (from his own point of view). Reducing the upper

bound of the higher interval reduces the “overtreatment” and makes it more attractive for

si.
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(ii) By (M’), there is a ši ≥ ŝi such that shi is indifferent between (ši, s
h
i ) and

(shi , s
h
i+1) (under βl!). (iii) Last, change βl to βh. As this decreases treatment,

shi will prefer (shi , s
h
i+1) over (ši, s

h
i ). Hence, shi−1 > ši.

The second result is the following: If sl1 ≤ sh1 , then sli < shi for all i =

2, . . . , n − 1. There are two steps to prove this: We start at the indifference5

condition of sl1. Then (i) sl1 is changed to sh1 and (ii) βl is changed to βh. In

both steps, the upper bound of the upper partition element–which is sl2 at the

start–has to be increased to keep indifference. Hence, sh2 > sl2 and the result

follows by induction.

(i) Under βl, sl1 is indifferent between (0, sl1) and (sl1, s
l
2). As sh1 ≥ sl1,10

(M) implies that there is a ŝ2 ≥ sl2 such that sh1 is indifferent between (0, sh1)

and (sh1 , ŝ2) under βl. (ii) Under βh treatment is lower and higher partition

elements are therefore ceteris paribus more attractive. Hence, sh2 such that

sh1 is indifferent between (0, sh1) and (sh1 , s
h
2) under βh has to satisfy sh2 > ŝ2.

Therefore, sh2 > sl2.15

The previous results imply that whenever shi > sli for some i, then shn−1 >

sln−1. To show that shi ≤ sli, it is therefore sufficient to show shn−1 ≤ sln−1. This

last part is a proof by contradiction. So, suppose shn−1 > sln−1. By the first

result, sh1 > sl1. Then by (M), there is a s̄1 > sl1 such that a forward solution

starting at s̄1 yields s̄n−1 = shn−1 (under βl). Note that by (M), s̄i > sli. This20

implies that s̄n−1 strictly prefers (s̄n−1, 1) to (s̄n−2, s̄n−1) (since a s̄n satisfying

the indifference condition “would have to be above 1”).

By the second result, s̄1 > sh1 as otherwise s̄n−1 < shn−1 which contradicts

the definition of s̄. Since s̄n−1 = shn−1, s̄n−2 ≥ shn−2: Otherwise, according to

result 1 above s̄1 > sh1 could not hold. Consequently, shn−1 prefers (s̄n−2, s
h
n−1)25

over (shn−1, 1) under βh. This is the same as saying s̄n−1 prefers (s̄n−2, s̄n−1) over

(s̄n−1, 1) under βh. Under βl lower partition elements become more attractive

and therefore the same holds true under βl. But this contradicts the conclusion

of the last paragraph. Hence, shn−1 > sln−1 cannot hold and shi ≤ sli is true.
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Write expected welfare as

W =

∫
Σd

n∑
i=1

∫ si

si−1

∫ 1

0

[
u(θ − τ(si−1, si, σ

d))− c(τ(si−1, si, σ
d))
]

dH(θ|σp, σd) prob(σp|σd)dσp dProb(σd)

where prob(σp|σd) is the ex ante density of σp given σd derived from F and

G using Bayes’ rule. In the same way Prob(σd) is the ex ante unconditional

distribution of σd. Note that all si and τ depend on β. Now take the derivative

of welfare with respect to β at β = 1. Since the doctor maximizes expected

welfare on each partition element, an envelope argument yields that dτ
dβ

can be

neglected. Hence,

dW

dβ

∣∣∣∣
β=1

=

∫
Σd

n∑
i=1

(∫ 1

0

[
u(θ − τ(si−1, si, σ

d))− c(τ(si−1, si, σ
d))
]
dH(θ|si, σd)

−
∫ 1

0

[
u(θ − τ(si, si+1, σ

d))− c(τ(si, si+1, σ
d))
]
dH(θ|si, σd)

)
prob(si|σd)

d si
dβ

dProb(σd).

According to the lemma above dsi/dβ < 0. Because of that and since c(τ(si−1, si)) <

c(τ(si, si+1)), leaving out the cost terms will increase the right hand side of the

previous equation. Hence,

dW

dβ

∣∣∣∣
β=1

<

∫
Σd

n∑
i=1

(∫ 1

0

[
u(θ − τ(si−1, si, σ

d))− u(θ − τ(si, si+1, σ
d))
]
dH(θ|si, σd)

)
prob(si|σd)

d si
dβ

dProb(σd)

=
n∑
i=1

{∫
Σd

∫ 1

0

[
u(θ − τ(si−1, si, σ

d))

−u(θ − τ(si, si+1, σ
d))
]
prob(σd, θ|si) dθ dσd

}
prob(si)

d si
dβ

= 0.

The last equality follows from the indifference condition which holds for every

si. The indifference condition states that the term in curly brackets is 0 for5

each i. Consequently, dW/dβ is negative at β = 1 and it is welfare improving

to lower β below one.
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Similarly, dW/dβ is positive at β = 0 and therefore the optimal β is interior.

To see this, note that the finest partition for β = 0 is fully separating.28 Hence,

τ(si−1, si, σ
d) approaches τ(si, si+1, σ

d) as β → 0 (eventually being τ(si, si, σ
d)

in the limit). Therefore, the dsi/dβ are multiplied by zero terms in the dW/dβ

expression and drop out. Consequently,5

dW

dβ

∣∣∣∣
β=0

=

∫
Σd

∫
Σp

∫ 1

0

(
−u′(θ − τ(σp, σp, σd))− c′(τ(σp, σp, σd))

)
H(θ|σp, σd) dτ(σp, σp, σd)

dβ
prob(σp|σd) dσp dProb(σd).

As the doctor maximizes the expected patient utility (with β = 0), the term∫ 1

0
u′(θ − τ(σp, σp, σd))dH(θ|σp, σd) is zero. Since −c′ < 0 and dτ/dβ < 0,

dW/dβ > 0 at β = 0 follows.

A.2.2 Copayments are optimal (Proof of proposition 3)

First, I want to analyze the case where the doctor is cost sensitive.29 With

copayments equal to zero the model collapses to the model of theorem 1. The

proof of proposition 3 is by contradiction. Suppose there is a treatment τ

prescribed in equilibrium with positive probability and γ = 0. It will be shown

that marginally increasing γ increases welfare in this case. Expected welfare

in this setting is

W =

∫
Σd

n∑
i=1

∫ si

si−1

∫ 1

0

v(w − p− γc(τ(si−1, s1, σ
d))) + u(θ − τ(si−1, s1, σ

d))

dH(θ|σp, σd) prob(σp|σd)dσp dProb(σd)

where by assumption

p = (1−γ)Ec(τ) = (1−γ)

∫
Σd

n∑
i=1

∫ si

si−1

c(τ(si−1, s1, σ
d)) prob(σp|σd)dσp dProb(σd)

28It is straightforward toextent the argument of Agastya et al. (2012) that the finest

distribution converges to full separation to the framework of this paper.
29The proof still goes through if the doctor is partially cost sensitive, i.e. has a β in (0, 1].
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in equilibrium. Insurance profits can be neglected when denoting welfare as

they are zero by assumption.

Increasing γ has a direct effect on welfare and an indirect effect by changing

the equilibrium information partition. As a first step, it is shown that the direct

effect of marginally increasing γ is zero when γ = 0. The idea is that the patient5

does not face financial risk when there is no coinsurance. Consequently, there

is no first order welfare effect from transferring financial risk to the patient

through copayments.

∂W

∂γ

∣∣∣∣
γ=0

=

∫
Σd

n∑
i=1

∫ si

si−1

∫ 1

0

[
(1− v′(w − p))

(
∂p

∂γ
+ c(τ(si−1, s1, σ

d))

)]
dH(θ|σp, σd) prob(σp|σd)dσp dProb(σd)

= (1− v′(w − p))
∫

Σd

n∑
i=1

∫ si

si−1

∫ 1

0

(
−Ec(τ) + c(τ(si−1, s1, σ

d))
)

dH(θ|σp, σd) prob(σp|σd)dσp dProb(σd)

= 0

Hence, it remains to show that the indirect effect of copayments, i.e. the

effect through changing the information partition, increases welfare at γ = 0.10

The following lemma shows that information is improved when γ increases.

Lemma 2. If γ is increased and the number of partition elements remains the

same, then si increases for all i = 1, . . . , n− 1.

Proof. First, note that a higher γ reduces the most preferred treatment τ .

Hence, higher γ reduces the wedge between cost sensitive doctor’s and patient’s15

interest. In this sense, a high γ is similar to a low β in the previous subsection.

The proof of this lemma is similar to the proof of lemma 1 and therefore only

sketched.

Take γl < γh with corresponding equilibrium partitions {0, sj1, . . . , s
j
n−1, 1}

where j = h, l.20

The first result is the following: If shi ≤ sli for some i, then the same holds

for all smaller i. Let i the highest i < n where shi ≤ sli. s
h
i is indifferent between
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(shi−1, s
h
i ) and (shi , s

h
i+1). The proof moves from the indifference condition of shi

to the indifference condition of sli in three steps: (i) changing shi+1 to sli+1, (ii)

changing from shi to sli and (iii) changing from γh to γl. In all three steps, the

lower bound of the lower partition element–shi−1 at the beginning–has to be

increased to keep the indifference condition. This shows that shi−1 < sli−1. The5

statement above follows then by induction.

The second result is the following: If sh1 ≤ sl1, then shi < sli for all i =

2, . . . , n − 1. This is proven in two steps: Take the indifference condition for

sh1 . Then (i) sh1 is changed to sl1 and (ii) γh is changed to γl. In both steps, the

upper bound of the upper partition element–which is sh2 at the start–has to10

be increased to keep the indifference condition. Hence, sl2 > sh2 and the result

follows by induction.

The previous results imply that whenever sli > shi for some i, then sln−1 >

shn−1. To show that sli ≤ shi , it is consequently sufficient to show sln−1 ≤ shn−1.

This part of the proof is by contradiction. Suppose sln−1 > shn−1. By the first15

result, sl1 > sh1 . Then by (M), there is a s̄1 > sh1 such that a forward solution

starting at s̄1 yields s̄n−1 = sln−1 (under γh). Note that by (M), s̄i > shi .

Therefore, s̄n−1 strictly prefers (s̄n−1, 1) to (s̄n−2, s̄n−1) (since a s̄n satisfying

the indifference condition “would have to be greater than 1”).

By the second result, s̄1 > sl1 as otherwise s̄n−1 < shn−1 contradicting the20

definition of s̄. As s̄n−1 = sln−1, s̄n−2 ≥ sln−2: Otherwise, s̄1 > sl1 could not

hold because of the first result above. Hence, sln−1 prefers (s̄n−2, s
l
n−1) over

(sln−1, 1) under γl. This is the same as saying s̄n−1 prefers (s̄n−2, s̄n−1) over

(s̄n−1, 1) under γl. Under γh lower partition elements become more attractive

and therefore the previous statement is also true under γh. But this contradicts25

the conclusion of the last paragraph. Hence, sln−1 > shn−1 cannot hold and

therefore sli ≤ shi .

Using the result above that the direct effect of a change in γ on welfare is
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zero (at γ = 0), the total effect on welfare can be written as

dW

dγ

∣∣∣∣
γ=0

=

∫
Σd

n∑
i=1

(∫ 1

0

u(θ − τ(si−1, si, σ
d))− u(θ − τ(si, si+1, σ

d)) dH(θ|si, σd)
)

prob(si|σd)
d si
dγ

dProb(σd)

+

∫
Σd

n∑
i=1

∫ si

si−1

∫ 1

0

−u′(θ − τ(si−1, si, σ
d))

[
∂τ(si−1, si, σ

d)

∂si−1

d si−1

dγ

+
∂τ(si−1, si, σ

d)

∂si

d si
dγ

]
dH(θ|σp, σd) prob(σp|σd)dσp dProb(σd)

= 0 +

∫
Σd

n∑
i=1

[
∂τ(si−1, si, σ

d)

∂si−1

d si−1

dγ
+
∂τ(si−1, si, σ

d)

∂si

d si
dγ

]
∫ si

si−1

∫ 1

0

c′(τ(si−1, si, σ
d))dH(θ|σp, σd) prob(σp|σd)dσp dProb(σd)

> 0

where the v() terms which cancel out are immediately left out. The second

equality holds because of the indifference condition, i.e. a patient with signal

si is indifferent between reporting the messages (si−1, si) and (si, si+1), and

because of the cost sensitive doctor’s first order condition for choosing τ . The5

inequality holds as each si is increasing in γ (see lemma 2) and as τ is increasing

in si−1 and si.

Hence, welfare is increased if copayments are increased from 0.

One could think of a more flexible copayment schedule, i.e. γ could be a

function of τ which allows different copayment rates for different treatments.10

Note that the arguments above are also valid on subsets of the range of possible

treatments. Using this insight, proposition 3 is actually more general: There

cannot be an interval of treatments prescribed with positive probability such

that the optimal copayment rate is zero for the treatments in this interval.

Second, I want to turn to the case where the doctor has no cost incentives.

It will be assumed that such a doctor maximizes expected consumer surplus

u(θ − τ) − γc(τ) with his treatment decision. Note that this implies that

dτ(σp, σd)/dγ < 0. Again it is shown that dW/dγ is positive at γ = 0. Welfare
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in this case is

W =

∫
Σ

∫
Θ

v(w−p−γc(τ(σp, σd)))+u(θ−τ(σp, σd)) dH(θ|σp, σd) dProb(σp, σd).

Now the derivative of welfare with respect to γ at γ = 0 is

dW

dγ

∣∣∣∣
γ=0

=

∫
Σ

∫
Θ

−v′(w − p)
(
c(τ(σp, σd)) +

∂p

∂γ

)
+
d τ(σp, σd)

dγ(
−u′(θ − τ(σp, σd))− v′(w − p) d p

dτ(σp, σd)

)
dH(θ|σp, σd) dProb(σp, σd).

The first term is zero by the assumption that insurance profits are zero. The

expectation of u′(·) over θ is zero by the first order condition for the doc-

tor’s treatment decision. From the zero profit constraint, it is clear that

dp/dτ(σp, σd) > 0. As dτ(σp, σd)/dγ < 0, dW/dγ > 0 at γ = 0 as had to5

be shown.
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