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Abstract

A consumer repeatedly asks an expert for advice. The expert’s incentives
are not aligned with the consumer’s preferences because he can receive a bonus
if the consumer takes certain actions. Over time, the expert gets to know the
consumer and is therefore able to give better advice (if he wants to do so). In
simple equilibria, both — consumer and expert — benefit from the expert’s learning
if “learning” is such that the expert’s best guess about what is the best advice
for the consumer becomes more precise. This provides a natural explanation for
why consumers have a preference for personalized advice and also for why most
internet users do not use anonymization tools. The theoretical predictions are
tested in a laboratory experiment.

JEL codes: C73, C91, D82, D83
Keywords: Advice, Cheap Talk, Privacy

1. Introduction

In many situations, consumers ask better-informed experts to guide their choices. This
happens even in situations where experts may have preferences over consumer choices
that do not match the consumers’ preferences, and it happens even in situations where it
is difficult for the consumer to accurately articulate his exact preferences. For example,

a consumer might ask his bank’s employees for financial advice. The bank employee
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typically receives a bonus if the consumer purchases a particular investment product and
often different investment products result in different bonuses for the adviser. There is
no reason to believe that the product with the highest bonus is also the one best suited
for the consumer. Similar situations occur in other retail sectors, such as consumer
electronics or even cars.

Another example is internet search. A consumer enters a search term and relies
on the search engine’s response. Since some links are sponsored, there is an incentive
for the search engine to emphasize the sponsored links more than links that better fit
the consumer’s needs but are not sponsored. A third example would be a minister
(or manager) asking a civil servant (subordinate) to draft a particular legislative act
or decree. Even if the civil servant has no policy preferences of his own, he might be
aware that a similar draft has already been written under a previous government and
that handing that old draft to the minister would save him a lot of time and effort.
Again, this old draft is unlikely to do exactly what the minister wanted to accomplish.
As a final example, consider a physician-patient relationship. The patient describes his
symptoms and the physician prescribes a medication. Given the lobbying efforts of the
pharmaceutical companies, it is quite possible that the physician has a preference for a
certain drug company or pharmaceutical product.

What do these examples have in common? A consumer asks an expert to help him
make a choice, although he cannot be sure what the expert’s preferences are. In none of
the examples is there a direct payment from the consumer to the expert, which means
that the consumer has little ability to provide the expert with the right incentives. Fur-
thermore, the consumer’s communication of his preferences is complicated (due to the
complicated nature of the issue and the consumer’s ignorance that leads him to seek
advice in the first place) and the expert’s task is difficult. In other words, even if the
expert tried to help the consumer as well as he can, there would be some likelihood of
misunderstanding and error. In a static one-shot game, we should not expect useful
advice in any of these situations: By the one-shot nature, an expert would optimally
recommend the alternative that earns him the (highest) bonus, since the consumer has
no way to punish this behavior. Knowing this, the consumer would then not even
ask for advice as the recommendation would not be consistent with his preferences.
However, the above examples do not usually resemble a one-shot game. Consumers
repeatedly consult the same financial adviser, use the same search engine, work with
the same subordinates or visit the same physician. Repeated interaction — one could
call it “relationship building” — has two interesting features: First, it is well known in
game theory that cooperative behavior can be sustained in repeated interactions, even
if this behavior cannot be sustained in a static one-shot game. Therefore, meaningful

advice might be possible because of the repeated nature of the advice situation. Sec-



ond, the adviser could learn to interpret the consumer’s wishes. That is, the adviser’s
ability to give fitting recommendations is likely to improve over time. This is because
both the adviser and the consumer can observe how previous recommendations have
played out, such as whether the consumer was satisfied with the product purchased
(or tried to return it), whether the consumer clicked on the recommended link (and
stayed on the website or subsequently purchased something there), whether the draft
was pushed forward or discarded or whether the patient was cured. The success or
failure of the recommendation can be used to learn how to interpret future requests
from the consumer.

It should be noted that the learning we have in mind is relationship-specific. In
particular, prior learning would be of little use to the consumer if he decides to switch
experts. Although the consumer might also learn how to express his wishes to some
extent, most of the learning seems to be on the expert’s side. This paper therefore
focuses on a setting where only the expert learns, and attempts to answer several
questions. The most basic question is whether an equilibrium with meaningful advice is
possible. The answer, unsurprisingly, is yes. The expert will give partially useful advice
in equilibrium because the consumer threatens to end the relationship (and therefore
the expert’s opportunity to collect bonuses) if he receives bad advice for a number
of periods. The key question is whether the consumer will benefit from the expert’s
learning. This is unclear because the consumer’s outside option is not affected by the
expert’s learning, i.e. the expert could counteract his improved ability to give the right
recommendation by recommending the product for which he receives a bonus more
often. It is shown that — under certain conditions — the consumer in a certain class
of simple equilibria nevertheless benefits. The reason for this is a value effect. The
more the expert learns about the consumer, the more valuable the consumer is to the
expert in the sense that the expected discounted bonus stream from that consumer is
higher. The reason is that bad advice due to misunderstandings, i.e. the expert trying
to give fitting advice but failing due to misunderstanding the consumer’s request, can
be avoided. Given the higher value, the expert will lose more if the consumer ends
the relationship and is therefore generally more inclined to give good advice to avoid
exactly that. This leads to a testable prediction: The probability that a relationship
will end now given that it has not already ended is lower the longer the relationship
lasts.

The result that consumers benefit from expert learning provides a natural expla-
nation for a puzzle that has emerged in the literature on privacy. People do not take

even simple measures to anonymize their online activities. For example, most users

I'More precisely, the probability that the relationship will end this period is lower than it was m
periods ago, where m € N is a number defined by the consumer’s equilibrium strategy.



use a search engine like Google directly, rather than using an anonymized service that
redirects their search queries through another server before forwarding them to Google
(and thus anonymizing them).? Privacy advocates emphasize that the more information
the search engine has about a user, the greater the potential for exploitation (a simple
exploitation method would be to display more sponsored links). The model shows that
this is not the only effect. Due to the value effect, consumers also benefit from the
search engine’s learning. Staying anonymous can lead to lower consumer surplus in the
model of this paper. This also explains why consumers might prefer to get advice from
the same person, such as having the same financial adviser at their bank whenever they
go there, or staying with the same physician instead of switching every time they fall
ill.

The rest of this paper is organized as follows: Section 2 discusses related literature.
Section 3 presents the model and the equilibrium analysis is performed in Section 4.
Section 5 deals with welfare and anonymization. Most proofs of our theoretical results
can be found in Appendix A. To compare our theoretical findings with real-world
behavior, we conducted a laboratory experiment. The key results from this experiment
are reported in Section 6. Section 7 discusses the results of this paper, Section 8

concludes.

2. Related literature

The consumer-expert relationship we study can be reinterpreted as a relationship be-
tween a principal and a noisily informed agent. In this sense, our work is naturally
related to the cheap talk literature started by Crawford and Sobel (1982) and surveyed
in Sobel (2013) and Blume et al. (2020). The fact that repeated interaction can be
beneficial despite the lack of commitment is reminiscent of the literature on relational
contracting started by Bengt Holmstrom (Holmstrom, 1978, 1982). There are two no-
table differences. First, most of the cheap talk literature is either static or deals with
reputation concerns (Sobel, 1985; Benabou and Laroque, 1992; Park, 2005). Reputation
issues are not addressed in the context of this paper but are addressed in Schottmiiller
(2019), where a similar model is used, which, however, does not allow for learning by the
expert. Second, and more importantly, the cheap talk literature deals with a different
misalignment of preferences. Typically, there is a one-dimensional decision and the ex-
pert is biased in one direction, e.g. he prefers slightly higher decisions than the decision
maker. The structure here is different because the expert simply has a preferred option
that is independent of the consumer’s optimal option. One implication of this structure

is that no meaningful advice is possible in a static setting, whereas this is obviously not

2There are many easy-to-use services of this type, such as https://www.startpage.com or https:
//www.privatesearch.io.



the case in the cheap talk literature.

Li et al. (2017) analyze a repeated games setting in which the expert’s and the
principal’s preferred projects are always distinct but the principal’s project does not
always exist. Moreover, there is always a default option that yields zero for all, and a
disastrous project that yields —oco for all. Only the expert observes the identity of the
projects, can communicate them and they are implemented if both expert and principal
put effort into the same project. Our paper differs in two ways: First, both the expert’s
and the consumer’s preferred option always exist and they can be equal. Second, the
expert is not perfectly informed about the consumer’s preferred option, but he receives
a signal whose quality may increase over time.

The setting in Lipnowski and Ramos (2020) is probably closest to ours, since there
the principal decides in each period whether to freeze the projects or delegate the project
decision to the expert. The expert observes the quality of the project (high or low) and
then decides whether to implement it or nothing, but the principal never learns the
quality of the project. They study an intertemporal delegation rule to create incentives
for the agent/expert and find that the agent represents the principal’s interests only
if dynamic incentives are provided. Our setting differs as (i) the agent has only noisy
information and (ii) the principal does not “pause” the expert but fires him when he is
dissatisfied with his advice. Furthermore, we focus on welfare dynamics in a class of
simple equilibria.

Another related strand of literature is that on consumer protection in financial advice
(Inderst and Ottaviani, 2012a,b, 2009). In these papers, the financial adviser is not only
concerned with getting his bonus but also with the suitability of his advice. They focus
on policy interventions that provide the adviser with the right incentives or payment
schemes depending on whether consumers know the adviser is biased or not. In our
framework, the expert is exclusively paid by his bonus and only cares indirectly about
the suitability of his advice as the consumer threatens to leave him after receiving bad
advice. Moreover, we model the improvement of the signal technology over time, while
Inderst and Ottaviani mostly assume an exogenous and static signal.

An important application of our paper is search engines. Previous work on this
market has focused mainly on ad pricing and auctioning (Edelman et al., 2007; Edelman
and Schwarz, 2010; Eliaz and Spiegler, 2011) while we focus on the strategic interaction
of search engine and user. More closely related is the literature on privacy in the context
of search engines. Computer science has provided ways to enable fully anonymous search
through encryption even when the provider has no commitment power, see Byers et al.
(2004) and Cetin et al. (2016). However, results on the benefits of personalization in
internet search are ambiguous. On the one hand, already Spiekermann et al. (2001)

argue that people value privacy protection but are not able to take the necessary means



to meet this privacy protection goal. In the same vein, Acquisti et al. (2015) have
demonstrated that people are unsure how to protect their data and what parts of their
data are used for what purpose. They conclude that privacy protection should be
regulated because naive people will be harmed otherwise. We add to this literature by
showing that even in the absence of naiveté it is unclear whether a user should allow
personalization or not. In fact, users benefit from personalization in a certain class of
simple equilibria. Experimental evidence shows that users value privacy to some extent
(Tsai et al., 2011; Chellappa and Sin, 2005) and that sellers can benefit more than
buyers from personalization (Hillenbrand and Hippel, 2019). On the other hand, some
authors have shown that providing some personal data can benefit consumers, see Xu
et al. (2007); Zimmer (2008).

3. Model

The model is a dynamic game with infinite time horizon. In each period, there are two
options, one of which the consumer (C) must choose. One of the two options fits C’s
needs and therefore gives him a payoff of 1 while the other option gives him a payoff of
0. C’s prior is that both options are equally likely to give him a payoff of 1.

The expert (E) receives a private and noisy signal about which option fits C’s needs.
More precisely, E’s signal leads to a posterior in which one option has probability
pF > 1/2 to fit C’s needs and the other option has probability 1 — p* < 1/2 to fit C’s
needs. Without loss of generality we call the option that is more likely to fit C’s needs
option 1. The precision of E’s signal, p*, is an element of a finite set P = {p',p?, ..., p"}
with 1/2 < pt < p?> < .- <p" < 1. As E learns about C’s needs over time, precision
improves in the following way: Whenever E recommends the option fitting C’s needs,

M1 (unless p* = p" in which case precision remains

precision improves from p* to p
unchanged).?

The expert’s payoffs are as follows: In every period, E has a bonus option. That is,
E receives a bonus of 1 if he recommends this option to C while he receives a payoff of
0 otherwise. Each option has ex ante the same probability of being the bonus option
and the identity of the bonus option is private information of E.*

The timing is as follows. In each period, E privately observes his signal and the
identity of his bonus option. Then E recommends an option to C. C follows this recom-

mendation and period payoffs realize. Both players observe whether the recommenda-

3The finiteness of P simplifies the exposition, but does not affect the results. As p’ cannot increase
above 1, learning must eventually flatten out in the sense that precision has to converge to an upper
bound as ¢ becomes large. Finiteness of P relieves us of the notationally burdensome task of taking
limits in certain proofs and allows us to use backward induction right away.

4Note that more options for the expert would only make the analysis more tedious without really
adding anything to the model, since the expert will only decide between his bonus option and the
option he considers most likely to be the fitting option for the consumer.



tion fits C’s needs or not. Then, C decides whether to end or continue the game. If C
ends the game, C receives an outside option Vp in the following period while E receives
no payoffs in all future periods. If C continues, another period of the same game begins.
Both players discount future payoffs with discount factor 6 € (0,1). Needs and bonus
option are assumed to be independent of each other and across periods.

In what follows, the word hit (miss) is used to denote the event that the recommen-
dation fits (does not fit) the consumer’s needs in a given period.

To make the problem interesting, C’s outside option should be neither too attractive
nor too unattractive. For example, V should be lower than the value the consumer
would receive if he had a signal of precision p™. If this was not satisfied, C would have
the dominant strategy to end the relationship immediately. The outside option should
also not be too low. More precisely, we assume that Vj is higher than the value C gets
when E recommends his bonus option in each period. If this did not hold, there would
be a unique perfect Bayesian equilibrium in which C always continues and E always
recommends his bonus option. These two conditions are stated as

1/2 p"

1—_5<Vo<1_5. (1)

Before turning to the players’ strategies, let us discuss some modeling choices. We
assume that the recommendation itself is payoff-relevant, i.e. E receives his bonus if
he recommends the bonus option and C receives his payoff if the recommendation fits
his needs. Put differently, there is no real decision by C whether or not to follow the
recommendation. This is not unreasonable because C has uniform beliefs and therefore
cannot draw any inference from the recommendation itself about the likelihood that
the recommendation fits his needs. Given that C has continued in the previous period
and thereby asked for more advice, it seems logical to follow that advice. That is, there
is no reason in the model to first ask for advice and then not follow it. It is also in
line with certain applications, e.g. a consumer using a search engine will typically not
refuse to click on a recommended link and most patients, as long as they can afford
it, will take the prescribed medication. It is assumed that at the end of a period
both C and E observe whether the given recommendation fitted the consumer’s needs.
In the examples mentioned earlier, this last assumption is reasonable: A salesperson
will observe whether the consumer tries to return the product, the civil servant will
observe whether his draft is pushed forward and the doctor will find out whether the
patient recovers. In the search engine example, the search engine observes whether the
link was clicked and — in the case of Google — to the extent that the target website
uses GoogleAnalytics, csi.gstatic, GoogleAdSense or a GooglePlus button, Google also

receives information about the user’s subsequent behavior on the target website.



Note that the model assumes independence at several points. First, the bonus option
is independent of the consumer’s needs. This is one of the main differences to the cheap
talk literature and appears naturally in the examples of the introduction. Second, there
is some temporal independence in the sense that the consumer’s needs and the bonus
options are drawn independently in each period. One way to interpret this is that the
requests of the consumer are unrelated, e.g. searching for an Italian restaurant in one
period and for news in another period in the search engine example or suffering from
different diseases in the patient-doctor example. In the financial advice example, the
market environment and the set of available products may change from period to period.

As argued before, E gets to know the consumer better, so the precision of E’s signal
should increase over time. Depending on the application, the precision might increase
either after each interaction or after each hit or not at all. It seems realistic that a
fitting recommendation tells more about a consumer’s preferences than a non-fitting
one. The assumption made here is that the precision increases with the number of past
hits and that this increase is deterministic and commonly known by C and E. That is,
no learning happens after misses. The special case of no learning at all will be analyzed
later as a starting point.

It is worth noting that no meaningful advice would be possible if the game was not
infinitely repeated. Let us consider the static case. E has no incentive to recommend
anything other than his bonus option. C therefore receives no information about which
option is more likely to fit his needs. A similar situation emerges in a finitely repeated
game. The static analysis applies to the last period. Since there is no meaningful
communication in the last period, C should end the game after the penultimate period
(regardless of history). Anticipating this, E will optimally recommend his bonus option
in the penultimate period, regardless of what his signal is. Iterating this reasoning the
game unravels and no meaningful advice is possible in any period. In the infinitely
repeated game, the situation changes because future bonuses may motivate E to give
truthful advice even if his bonus option is option 2. As there is no last period, there is
no period in which these dynamic incentives break down.

What are the strategies of the players in this game? We assume that the players
base their decision only on observed, payoff-relevant information. That is, C’s decision
depends only on the sequence of hits and misses in the previous periods.” E has to
decide in each period which option to recommend. His decision depends on his posterior
belief, his bonus action and the history of hits and misses. In principle, his decision
could also depend on the history of bonus options, but this possibility is neglected

because his current and future payoffs do not depend on this information (neither

5In principle, C observes the specific recommendations but since the option labels are not observed
by him, he is unable to condition his strategy on these labels.



directly nor indirectly as C’s strategy cannot condition on this information, which C
has not observed).

In the following, we employ two commonly used equilibrium notions and compare
their outcomes. Both put further restrictions on strategies. First is the Markov equi-
librium, where strategies condition only on the actions and information of the current
period and a payoff-relevant state variable. The state variable is the current precision
pk. Consequently, E’s strategy is a function sg: P x {1,2} — [0,1] that assigns a prob-
ability of recommending option 1 to every p* € P and the identity of the bonus option.
C’s strategy is a function sg: P x {hit,miss} — [0,1] that assigns a probability of
continuing the game to every p* € P and the success of this period’s recommendation.

The second notion of equilibrium is (an extension of) grim trigger. C continues as
long as the recommendations are hits. He ends the game if m consecutive recommen-
dations are misses for some m € N. E plays a best response to this strategy. Of course,
it remains to be shown that C’s grim trigger strategy is a best response to E’s best

response, but this turns out to be straightforward unless Vy is too high.

4. Analysis

In the following, we study two classes of simple equilibria and demonstrate the welfare
implications. In Markov equilibria, consumers do not benefit from learning. The logic
is that the consumer’s outside option does not improve when the expert learns and
consequently the expert will not be willing to leave him a higher surplus. In a grim
trigger equilibrium, we show that the consumer does benefit from the expert’s learning.
However, if we extend the grim trigger concept such that the consumer does not quit
after the first bad advice but after, say, two consecutive bad advice, the consumer may

even lose out (for some parameter values) due to the expert’s learning.

4.1. Markov equilibrium

Note first that there is always a babbling Markov equilibrium. In this equilibrium, E will
always recommend his bonus option and C will always stop the game. Clearly, these
are mutually best responses given assumption (1). Therefore, the interesting question is
not whether a Markov equilibrium exists but whether a Markov equilibrium with some
information transmission exists. Before answering this question in general, it is useful
to analyze the case without learning where the precision of E’s signal remains constant.
If C does not stop the game beforehand, this situation occurs after n — 1 hits in our

model when E’s signal has precision p".



4.1.1. Model without learning

Without learning, the state never changes and therefore a Markov strategy will only
condition on this period’s information/actions. That is, a strategy for E consists of two
probabilities of recommending option 1 if (i) it is the bonus option and (ii) it is not.
Similarly, a strategy of C consists of two probabilities of continuing: one in case of a
hit and one in case of a miss.

In equilibrium, the probability of continuing is (weakly) higher in case of a hit than
in case of a miss. Otherwise, E would have an incentive to give worst possible advice,
i.e. to always recommend option 2 if it is the bonus option (and possibly even if it is
not) which, according to (1), automatically implies that C is better off ending the game.

Since the probability of continuing the game is higher in case of a hit than in case
of a miss, it is optimal for E to recommend option 1 if option 1 is the bonus option. In
this case the incentives of C and E are aligned. E’s strategy can therefore be reduced
to a probability a of recommending option 1 when option 2 is the bonus option.

While other equilibria can exist, we will focus on the case where C continues with
probability 1 in case of a hit. Note that this provides the greatest incentive for E to
be truthful. The restriction is not problematic: It is not hard to show that whenever
a non-babbling Markov equilibrium exists, there exists a Markov equilibrium in which
C continues with probability 1 in case of a hit. Furthermore, this is the equilibrium
that Pareto dominates all other Markov equilibria. Under this constraint, C’s strategy
is simply a probability 8 of continuing in case the recommendation is a miss.

Denote E’s equilibrium value, i.e. his discounted expected payoff stream at the start
of a period (even before knowing the identity of the bonus option), by II. If option 2 is

the bonus option, E prefers recommending option 1 if

poll + (1 — p)BoIl > 1+ pBoll + (1 — p)dll
(2p — 1)0T1 — 1
(2p —1)611

&8 < (2)

Denote C’s equilibrium value by V and note that C is willing to continue only if
V' > Vp. Since this is independent of whether the current period’s recommendation
was a hit or a miss and since C continues for sure after a hit, C must either continue
with probability 1 even after a miss, § = 1, or C must be indifferent, V' = V5. The
former cannot happen in equilibrium: (2) cannot hold for § = 1 and E would therefore

always recommend his bonus option. However, by (1), C would then strictly prefer not
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to continue. Therefore, V = Vj in equilibrium and consequently a has to be such that®

1 1
Vo = §p+§(ap+(1—a)(1—p))+5vo
2101
Sa = o1 (3)

By (1), @ € (0,1). Hence, in an informative Markov equilibrium, E uses a mixed strategy
and E is only willing to mix if (2) holds with equality. Given these equilibrium strategies
one can determine the equilibrium values and obtain conditions for the existence of a

non-babbling Markov equilibrium.

Proposition 1. A non-babbling Markov equilibrium in the model without learning exists

iof and only of L5 a3
—_— p P—
< . 4
o T 2 (4)

In such an equilibrium V =V and I1 > 0 and in the Pareto optimal Markov equilibrium

a is given by (3) and f=1—1/[(2p — 1)d11].

Note that condition (4) is more likely to be satisfied the higher p and § are. Moreover,
it implies p > 0.75, so the signal quality has to be quite high in order to guarantee the
existence of a Markov equilibrium. Intuitively, this makes sense since the expert has
to be incentivized to recommend option 1 in some cases even when it is not his bonus
option. This will happen when the expert is more patient (high 9) or is reasonably sure
to produce a hit (high p) in this case, such that the next period will be reached with
higher probability.

4.1.2. Model with learning

Also in the model with learning, it is straightforward to see that E will always rec-
ommend option 1 when option 1 is the bonus option. As before, we will focus on
non-babbling Markov equilibria in which C continues for sure in case of a hit. Strate-
gies are therefore given by sets of probabilities {ak}ke{lwn} and {5k}ke{1,...,n}~ The
players’ values, i.e. their expected discounted payoff streams at the start of a period
with precision p”*, are denoted by IT* and V*. It follows from the previous subsection
that such an equilibrium can only exist if (4) holds (for p = p"™). This condition is
necessary but not sufficient for the existence of a non-babbling Markov equilibrium and
is therefore generalized below.

The first step is to show that in no period E will recommend option 1 regardless
of the identity of the bonus option while C continues regardless of whether the rec-

ommendation is a hit or a miss. While this property is not surprising, it is also not

6As C is indifferent, we can determine his value V' = Vp by writing down the expected payoff stream
if he continued for sure this period.
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straightforward: After all, recommending option 1 gives E a higher chance to move to
the next highest precision and in principle it would be possible for this to motivate him
to be truthful (if [I*** is sufficiently larger than TI%).

Lemma 1. In Markov equilibrium o = B¥ = 1 cannot hold for any k because E’s best

response to f¥ =1 is o = 0.
Lemma 2. In every Markov equilibrium V* = Vo for all k € {1,2,...,n}.

Lemma 2 implies E’s strategy in Markov equilibrium. If the game reaches precision
p* with positive probability in a Markov equilibrium, then E has to mix such that C is

indifferent between continuing and stopping. That is,

1

1
Vo = §pk -+ 5 (Oékpk + (1 — Ozk)(l — pk)) -+ (SVO
e 20—d)o—1

= o

)
Note that o, as given by (5), is in (0, 1) by assumption (1). Consequently, E must be
indifferent between recommending either option if the bonus option is option 2. This

indifference condition determines 3*:

14 p*BFoIIF 4 (1 — p*)sI* ! = 0+ pFoll"! + (1 — ph)groll?
(2p" — 1)oTTF+! — 1

& p 2pF — 1)ollF (6)

Note that II" is given by the stationary equilibrium value derived in the proof of Propo-
sition 1. From this, II""! and B"~! can be obtained and by backward induction all
other ¥ and II* can also be obtained. A non-babbling Markov equilibrium exists if all
such obtained ¥ are in [0, 1]. The following proposition gives a necessary and sufficient

condition for exactly this.

Proposition 2. A non-babbling Markov equilibrium in the model with learning exists if

and only if
n—3

g2 4p —3 et N
Z O 5 2 - (7)
1— 4p 2 (5( pl — 1)

In this Markov equilibrium, V* =V and

n—k—1

5n—k 4pn_3 T .4pj+k_3
k __ J -
. _1—54;971—2Jr Z 54pj+k—2

for k€ {1,2,...,n}, and o* and B* are given by (5) and (6), respectively.
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4.2. Simple grim trigger strategies and m-equilibrium

Like most repeated games, the game described here has multiple perfect Bayesian Nash
equilibria. We will now focus on a class of equilibria in which C employs the following
particularly simple strategy: C continues the relationship unless the past m > 1 recom-
mendations were misses. After m consecutive misses, C stops the game and consumes
his outside option. Since this strategy is somewhat similar to the grim trigger strate-
gies taught in introductory game theory, we will call this strategy a simple grim trigger
strategy of length m or m-strategy for short. A perfect Bayesian Nash equilibrium in
which C uses an m-strategy is called m-equilibrium.

When can an m-strategy be optimal for C? First, C must have a continuation value
of at least Vp after any history that contains fewer than m consecutive misses. Second,
continuing after m misses must result in a continuation value of at most V5. The latter
can be easily achieved: According to (1), it is optimal to end the game if E recommends
his bonus option in all subsequent periods. In an m-equilibrium, continuing after m or
more misses is clearly off the equilibrium path. Hence, the following off path beliefs of
E will make this response optimal: If C has continued after m misses before, then E
believes that C will end the game in the next period regardless of whether there is a
miss or hit in the current period. Given this belief, it is clearly optimal to recommend
the bonus option now. This implies that it is indeed optimal for C to end the game
after m (or more) misses. These off path beliefs are not ruled out by perfect Bayesian
Nash equilibrium or normal refinements.

Based on this off path construction, the following steps suffice to construct an m-
equilibrium. First, derive E’s best response to C’s m-strategy. Second, verify that C’s
continuation value on the equilibrium path is at least V5. This implies that C’s strategy
is optimal as ending the game earlier always yields only V.

What is E’s best response to an m-strategy? In a given period, E is always tempted
to recommend the bonus option in order to secure a payoff of 1. The downside of this
choice is that a miss is quite likely if the posterior belief that the bonus action fits C’s
needs is low. An additional miss brings E closer to the end of the relationship, stopping
the bonus stream forever and therefore leading to a payoff of zero for E. It is immediate
that E will always recommend option 1 if option 1 is the bonus option.

We denote the value of the expected discounted bonus stream after ¢ consecutive
misses, when the signal strength is p*, by II¥. After ¢ — 1 consecutive misses, it is
optimal for E to recommend option 1 instead of the bonus option (in case the two are
not identical) if the following relation (9) holds.

PpPOIIF 4+ (1 — pM)OTIET -1 < pFSTIET! + (1 — pF)s1IF (9)
1

- < Hk+1 _ Hk

< o(2pk —1) — 0 t
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Note that in an m-equilibrium II¥, = 0. Consequently, E — for a given k — is most
inclined to give good advice after m — 1 misses. The following lemma verifies a more
general result: TIF is decreasing in the number of misses ¢ which implies that E becomes
more eager to give good advice as the number of misses increases. Furthermore, E

benefits from learning in the sense that II% is increasing in k.
Lemma 3. In every m-equilibrium, 11E is increasing in k and I} is decreasing in t.

Lemma 3 has a direct implication for E’s strategy in an m-equilibrium: As II¥ is
decreasing in ¢, (9) is more likely to be satisfied for higher ¢ (fixing k). Thus, for a
given precision p¥, E will recommend the bonus option if ¢ is low and option 1 if ¢ is
sufficiently high (in case the two do not coincide). This result is stated as a corollary

for further reference.

Corollary 1. In every m-equilibrium, E uses a precision dependent cutoff strategy. That
18, B recommends the bonus option if the number of consecutive misses t with signal
strength p* is strictly below some threshold I*¥ € {0,1,...,m} and recommends option 1

otherwise.

Note that both the case (¥ = 0, corresponding to E always recommending option
1, and the case [¥ = m, corresponding to always recommending the bonus option, are
allowed. For t > [*, E’s value can be written as ITIF = 1/2 + p*6II5™ + (1 —pk) SIIF, ;.
Keeping in mind that II¥ = 0 in an m-equilibrium, backward induction gives for ¢ €
{ik,...,m—1}

m—t—1
(1 . .
my= > & (5(1 -y + (1 —p’“)]fFH’S“) : (10)

Jj=0

For t < I¥, E’s value is I1f = 1+ 0I5 ™ /2 + 611¥,, /2. Using the expression for ¢ > [*

above, iterating backwards yields for t < [*

F—t—1 1\’ 1\ 7+ m—1%—1 s\t 1
8 E () ) E )
j=0 J=0
(11)

Using relation (10), we can derive the exact value of the threshold [*:
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Lemma 4. The threshold I¥ chosen by E in an m-equilibrium is given by

;

0, if 3 +ptoTIg < (1-0(1—p*))(I5H — Grtps)
m, if H’SH < m

Ik — In (1(16(1pk))m> (12)
max{ 0, [m—1— 1n(5(1_p;)) : , else.

\

Note that Lemma 4 also implies that m > [¥ always holds in the third case, since the
logarithm in the numerator is negative (the negations of the first two conditions ensure

that the term inside the logarithm is between 0 and 1). This justifies the following

Remark 1. If I¥ = m for some k in an m-equilibrium, then also I' = m for all i €
{1,...,k — 1}. This follows directly from Lemma 4 as HSH 15 1ncreasing i k and

m 1s decreasing in k.

It is useful to first analyze the case without (further) learning which occurs after
n — 1 hits.

4.2.1. Model without learning

For k > n, [Tk = TI7 since there is no more additional learning. This implies that in an
m-equilibrium, IIf has to solve (11) with the same IIj on both sides of the equation.
Furthermore, {™ in this equation has to be optimal in the sense of (9). The following

lemma implies that there exist unique [T} and [" satisfying these optimality conditions.”

Lemma 5. F has a unique best response to C’s m-strategy in the model without learning.

Whether an m-equilibrium exists depends on C’s outside option. If E’s best response
to C’s m-strategy, as derived in the proof of Lemma 5, leaves C with a sufficiently high

value after 0 misses, then an m-equilibrium exists.

Proposition 3. An m-equilibrium in the model without learning does not exist if

1— 64 (6/2)m+
51— (3/2)")

If (13) does not hold, an m-equilibrium exists if and only if Vo < Vo for some Vo

satisfying (1).8

“For uniqueness, we require the tie-breaking rule that E recommends option 1 if he is indifferent.
Without this tie-breaking uniqueness is (only) generic.

2" — 1< (13)

_s
8Note that for m = 1, the condition (13) reduces to 2p" —1 < ! = ept < %-l— 12—_55. This is exactly

the existence condition (4) for a Markov equilibrium without learning.
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4.2.2. Model with learning

We start by deducing explicit formulas for the continuation value V* of the consumer
after ¢ consecutive misses and with precision k. As V¥ =V, in an m-equilibrium, the

value for t € {I¥,...,m — 1} can be derived by backward induction. We obtain

m—t—1
VE= ST (- pPE L SV + (1 ) W, (14)

=0

Using this, we can also derive the value of V¥ for ¢ < [*. Tt is given by

tk—t—1 5 jl
V=) (5) (1 +0V™)

J=0

S tk—¢ [ m—1F-1 o
" (5) D A= pYEP V) + (=) Ve | (15)
j=0

Before we compute the expert’s expected value Ily at the start of the game, we
introduce some notation. In an advice relationship between a consumer and an expert,
let w = (wy, ..., w,_1) denote the vector of waiting times until the first, second, ..., (n—
1)—th hit, where w; denotes the number of periods in learning level i (with precision p*)
until the i—th hit occured. In an m-equilibrium, w; > m implies that the consumer will
fire the expert as he produced at least m consecutive misses. Hence, there are two types
of possible histories in an advice relationship: First, those where the expert produced
at least n — 1 hits and reached the last precision level p™. Second, those where the
expert produced at least m consecutive misses before p™ was reached. We denote these

two sets of histories by

W, ={w=(wy,...,w,1) EN"H1 <w; <mVi€{l,...,n—1}} and

Wi ={w = (wi,...,w;-) € N for some 1 < j* <n — 1w =m+ 1,1 <w; <m Vi< j*}.

The set of all feasible histories in an m-equilibrium is then given by W = W, UW;. For
any w € Wy, let us denote by len(w) the dimension of the vector w. This value always
corresponds to the learning level in which the expert gets fired because he produces m

consecutive misses. We can now derive IIj.

Proposition 4. In an m-equilibrium, let (lk)k:17.,_7n denote the vector of switching strate-

gies for the expert, depending on the precision level. The expected value Iy of the expert
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at the beginning of the game is given by the formula

I, = Z P(w = @)E(|w = o),

where P(w = ID) — (%)lle"(w)(l . plen(w))m_llen(w)*

\

YU 4T 00300 "

) =1 w]‘ ' a7
and E(TTy|lw = w) = ¢ O e e e O €W
len(w k-1 w 1
k= ( i <]l{wk<lk}2h 5 + Lyg, > ( heo 0" + hepe 0
len(w) 1 en(w) p o —
B ( P tgh 1y ) , sz €Wy

The following result deals with the hazard rate, i.e. the probability that the expert is
fired in a given learning level, conditional on having reached that level. More concretely,
we denote by H R(k) the probability of having m consecutive misses in an m-equilibrium
after reaching precision level k. For the last precision level £ = n, HR(n) denotes the
probability of being fired in this level without having scored a hit before (since the game

is infinitely repeated, the probability of being fired in the last precision level is 1).

Proposition 5. If p"™! > 1—(1—p*)m2m=1 holds for all k in {1,... ,n—1}, then HR(k)

1s decreasing in k in an m-equilibrium.

Example 1. To illustrate the above proposition, let us consider an m = 2 equilibrium
with an initial precision of p* = 0.51. The subsequent precision levels that guarantee
a decreasing hazard rate are given by p®> = 0.5198,p ~ 0.5388,p* ~ 0.5746,p° ~
0.6381, pb ~ 0.7380, p” ~ 0.8627, p® ~ 0.9623, p° ~ 0.9972.

Example 2. Figure 1 shows the precision levels that ensure a decreasing hazard rate

according to Proposition 5 form =2,m =3 and m = 4.

5. Welfare dynamics and anonymization

In this section, we discuss the dynamics of consumer surplus. Since the consumer’s value
equals his outside option regardless of the precision level in Markov equilibrium, the
consumer does not benefit from learning in a Markov equilibrium. This is consistent
with the argument that the expert can pocket all the benefit since the consumer’s
outside option (and therefore bargaining position) does not improve as the expert learns.

However, analysis of m-equilibria shows that this logic may be flawed. Consider first
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Figure 1: Sufficient learning jumps for a decreasing hazard rate

the case of a classic grim trigger strategy, i.e. m = 1. The follwing proposition implies

that consumers benefit from learning in this class of equilibria.

Proposition 6. In an m = 1 equilibrium, V¥ is strictly increasing in k and I* is weakly

decreasing in k.

That is, the consumer can benefit for two reasons: simply because the expert’s pre-
cision and therefore the advice quality improves but also because the expert’s strategy
can become more favorable over time. The intuition is that, by Lemma 3, the expert’s
profits are increasing in the precision level k (as long as the game continues). There-
fore, as precision increases, he is more inclined to give good advice in order to reap the
increasing future benefits.

To further illustrate the previous result and also to shed light on the dynamics in
m-equilibria for m > 1, we now consider the case of only two precision levels, p! and p?.
We are primarily interested in the expert’s choice of optimal thresholds I and [2, since
they determine the distribution of welfare between the consumer and the expert. First,
we study the 1—equilibrium in which the consumer ends the relationship after the first
miss. The following lemma shows that the expert’s choice depends on how large ¢ is

relative to p' and p?.
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Lemma 6. Letn = 2. If the consumer ends the game after one miss, the expert’s advice

choices 11, 1% are given by

(1,1), ford < 5=t

2p2—1/2
1 72y __ _
(I 17) = € (1,0), for ozl <0 < -7 (16)
(0,0), ford > m

The previous lemma implies that consumers benefit from learning in the m = 1
equilibrium: In equilibrium, {? (or more generally [" for n rounds of learning) must
equal 0. Otherwise, the consumer would be better off ending the advice relationship
once the last precision level is reached, i.e. the m = 1 strategy would not be a best
response. This implies that the cutoffs [* are weakly decreasing in k in the n = 2 case
and therefore advice improves in k for two reasons. First, the consumer can benefit
from a lower [*¥ and thus a more honest advice strategy from the expert. Second, even
if I = [2 = 0 and therefore the expert’s advice strategy remains constant, the consumer
benefits from learning as the signal technology improves.

While consumers benefit from learning in an m = 1 equilibrium, this is not neces-
sarily the case in an m > 1 equilibrium. We illustrate this in the simplest possible case,
i.e. only one round of learning (n = 2) and m = 2. In this case, we show that there
are parameter values for which /! = 0 and /> = 1 in an m = 2 equilibrium. That is,
the expert is less willing to give good advice after the signal technology improved. In
our example, this change in expert strategy affects the consumer’s payoff more than the
improvement in signal technology and therefore the consumer’s value will be lower at
the beginning of a period with improved signal technology than at the beginning of the

game.

Lemma 7. Let n = 2. In an m = 2 equilibrium, I* = 0 and [*> = 1 if and only if both

1+46/4 1+46/2 (1+0)/2—6*p*/2
1-0/2— 02p2/2 max{1 52— 0/ T—p— (1 —p2)52p2}
1 (1-phs  plo(l+(1-pHo)(A+d/4)

R R I Y ey

(6/2+ 6*pt/2)(1 4+ 6/4)
1-0/2— 0%p2/2

140/2+

> max {1 +d/4+ (6/2+ 5°/4)(1 + 6/4) } hold.

1—6/2—6%p2/2

Thus, an m = 2 equilibrium with {! = 0 and [? = 1 exists if the two inequalities
above hold simultanenously. For § = .98, p! = .85 and p? = .95 both inequalities hold
with strict inequality. Furthermore, for Vo = 30, we get VZ ~ 31.33 < 31.56 =~ V),

which proves the following result:
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Proposition 7. There exists an open set of parameters such that Vil > Vi in anm = 2

equilibrium.

What is the intuition behind these results? Let us first consider Proposition 6.
Knowing the consumer better means that the expert is better able to keep the consumer
satisfied. The expert’s value from giving good advice is higher when the signal is better
because he is less likely to lose the consumer due to random errors. However, the
value of recommending the bonus option does not depend on the signal technology.
Thus, improvements in signal technology make it relatively more attractive to give good
advice. Technically, the better the signal technology, the higher the continuation value
of the relationship for the expert. This means that future payoffs and a continuation
of the relationship gain in importance when the expert’s signal technology improves
and he is therefore more willing to give good advice. We call this the value effect of
improved information and note that this effect is positive for the consumer.

Proposition 7 illustrates another dynamic effect that comes into play in more com-
plicated equilibria. If the expert does not expect the consumer to end the advice rela-
tionship in case of a miss, it may be optimal for the expert to gamble: recommend the
bonus option today and hope, in case of a miss, that recommending option 1 tomorrow
will prevent the consumer from ending the relationship. The better the expert gets to
know the consumer, the greater the incentive to gamble: The improved signal means
that it is more likely that he will be able to provide a good recommendation if that
is what is needed to keep the consumer tomorrow. Put differently, the risk of ending
the relationship is lower because the expert can be reasonably confident of providing
a fitting recommendation “on the spot” if this is needed to keep the consumer. This
gambling effect is negative for the consumer. In the example above, the gambling ef-
fect outweighs the value effect, so the consumer’s continuation value is higher when the
signal technology is worse. Note that the gambling effect is not present in m = 1 equilib-
ria, since in such an equilibrium the consumer ends the advice relationship immediately
after the first miss.

We will now turn to the question of anonymization. The use of anonymized services
makes relationship-specific learning impossible. For example, an internet search engine
cannot personalize search results if the consumer uses an anonymized version of the

9 In our model, anonymization corresponds to facing an expert who

search engine.
always remains at the precision level p! due to his inability to learn. Will the consumer
benefit from anonymization? In a Markov equilibrium, the consumer surplus is always
equal to the outside option, so anonymization has no effect. In an m = 1 equilibrium,

on the other hand, anonymization harms the consumer: such an equilibrium exists only

9 Anonymized versions of major internet search engines are widely available, see for example https:
//www.startpage.com.
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if E always recommends option 1 and in this case it is clear that the consumer would
lose from anonymization.'® However, the consumer can benefit from anonymization in
m~equilibria with m > 1. Consider the example above, on which Proposition 7 was
based. An equilibrium with m = 2 also exists in the game where no learning is possible
due to anonymization. In this anonymization equilibrium, [ = 0 and the consumer value
is V! = 36.44 which is larger than V' and V;Z in the equilibrium without anonymization.
The intuition is that in this example learning leads to gambling, i.e. when precision
equals p?, E is sufficiently confident that he can produce a hit on demand. Hence, he
finds it optimal to recommend the bonus option in case the last recommendation was a
hit. Without learning, the precision is too low to allow E to gamble and C benefits from

sincere advice (albeit with a lower precision). This establishes the following result.

Proposition 8. In Markov equilibrium anonymization neither harms nor benefits the
consumer. In m =1 equilibria the consumer always loses from anonymization while in
m > 1 equilibria the consumer can benefit from anonymization for certain parameter

values.

6. Experimental Design and Results

In this section, we present the design of our laboratory experiment and its main results.

Additional results and robustness checks can be found in Appendix C.

6.1. Experimental Design

The experiment was conducted between December 2021 and February 2022 at the
Cologne Laboratory for Economic Research, University of Cologne. We used the ex-
perimental software oTree (Chen et al. (2016)) and recruited participants via ORSEE
(Greiner (2015)). The study was preregistered in the AEA RCT Registry (Gramb
and Schottmiiller (2022)), its unique identifying number is: AEARCTR-0008682. Par-
ticipants were randomly assigned to either the control group or the treatment group.
In both groups, participants first read the instructions for their group, see Appendix
B (in German), and answered a set of incentivized control questions. Then, players
were randomly assigned the role of expert or consumer. Framing of roles was neutral
in instructions and experiment. Subsequently, they played ten supergames (seven su-
pergames in the pilot session in December, which was a treatment group session) of the
game described in Section 3, each in their assigned role. After each supergame, each
participant was randomly matched with another participant with the opposite role for

the next supergame. The discounting of payoffs in the experiment was simulated by

10Note that the existence of an m = 1 equilibrium with anonymization implies that E will always
recommend option 1 in the m = 1 equilibrium without anonymization: this follows directly from (9)
and the facts that II¥ = 0 for ¢ > 0 in m = 1 equilibrium and HS'H is weakly larger with learning than
without.
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an exogenous stopping probability. After each round of a supergame, the game was
exogenously ended with a probability of 10%, corresponding to a value of § = 0.9 in our
model. In the control group, experts had a constant signal strength of 0.82. That is, the
control group can be interpreted as a setting in which advice is given anonymously and
therefore learning is not possible. In the treatment group, the first precision level was
also 0.82 and precision was increased by 0.02 after each hit up to a maximum precision
of 0.9. That is, the treatment group represents a setting in which personalized advice
and incremental learning is possible. Once a consumer decided to end the game in either
group, he immediately received a payoff of 5 points (while the expert’s bonus and the
consumer’s payoff in case of a hit were both 1 point). It should be noted that in our
model the outside option is paid out at the beginning of the next period (since it always
exists). Thus, the payout of 5 points after firing the expert corresponds to an outside
option of Vp = % = % = 5.5. After all supergames were completed, one supergame was
randomly selected for each participant and the points earned there were paid out (with
one point being worth 1€). At the end, participants were asked incentivized questions
eliciting their risk attitude and completed a non-incentivized survey about trust atti-
tude, age, gender and faculty. Additionally, each participant was paid a show-up fee of
4€. Participants’ total payments ranged from 4€ to 25€. One session lasted between
29 and 56 minutes. There were seven sessions with a total of 156 participants in the
treatment group and four sessions with a total of 98 participants in the control group.

No participant attended more than one session.

6.2. Results

The main outcomes we are interested in are advice quality and consumer welfare in both
groups. Let us start with advice quality. We measure this as the share of good advice
given by the expert (in terms of the recommendation of option 1) in all situations where
he faced a tradeoff (bonus option was option 2). Figure 2 shows that the advice quality
in the treatment group is significantly better than in the control group. Hence, the
potential increase in learning level incentivizes the experts to give better advice to retain
consumers. As can be seen in Figure 3, this expert behavior leads to higher average
consumer welfare in the treatment group, although the difference is not significant. A
possible reason for the (only) small increase in consumer welfare in the treatment group
is that consumers tend to distrust the expert more at higher learning levels. This can
be seen in the firing rates in the treatment group.

In Figure 4, we see that the hazard rate!! increases overall with learning level.
Specifically, the hazard rate for precision levels po, p3 and p, is significantly higher than

for lower levels py and p;. This could also drive the effect seen in Figure 2, where

1Tn this general case, the hazard rate is simply the relative frequency with which consumers fire
experts at a given learning level.
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Figure 2: Advice Quality in Control and Treatment group

experts try to convince consumers not to fire them by giving them even more good
advice. Note that this behavior does not contradict our theoretical predictions: The
sufficient condition from Proposition 5 that the hazard rate decreases would require a
level p; > 0.9352 for the value pg = 0.82. In the experiment, we set p; = 0.84, which
is too small for the model to predict a decreasing hazard rate. One possible reason for
this increase in hazard rate could be attribution of failure: At low learning levels, the
consumer might attribute a miss to the expert’s low signal strength. At high learning
levels, it becomes increasingly likely that a miss is due to the expert’s strategy to collect
his bonus instead of giving good advice. This is then punished by the consumer who
fires such experts. Interestingly, the hazard rate in the control group is significantly
higher than the hazard rate for the first two learning levels in the treatment group. This
suggests that consumers assume that the learning incentive has a positive effect on the

relationship and do not fire the expert to establish such a long-term relationship.

7. Discussion

The results in Section 4 and 5 have implications for anonymization. Activists and ex-
perts alike recommend measures to preserve anonymity online. Although many of these

recommendations are easy to follow, such as using an anonymized version of Google
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instead of Google itself, hardly any internet user follows them. The above analysis indi-
cates that consumers might be right not to anonymize: Personalized recommendations
are more valuable not only from a total surplus perspective, but also from a consumer
perspective in m-equilibrium if m = 1 (and often also if m > 1). The reason for this
is simple. The more past usage data is available, the more valuable the customer is.
The expert, e.g. Google, does not want to risk losing valuable customers. Hence, a
customer enjoys better service when the expert can use past usage data from him. This
theoretical finding is also supported by our experimental results: As we have shown in
Section 6, experts give better advice in the treatment group where it is possible to learn
from past interactions.

The same principle applies to other applications than Google and explains why long-
term advisers are more valuable than short-term advisers. The m-equilibrium provides
an interesting prediction for the hazard rate, i.e. the probability that a consumer will
end the relationship after a certain number of hits if he has not already ended it. In an
m~equilibrium, the hazard rate decreases over time when the change in signal quality
between two learning levels is sufficiently high.

Of course, these results are subject to some caveats. The first is that the outside

option of the consumer was held constant. If the outside option is an alternative expert,
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this could change. To give an example, say there are two experts and everyone agrees
that Expert 1 is slightly more knowledgeable than Expert 2. The outside option then
corresponds to getting advice from Expert 2. If everyone uses Expert 1, however, Expert
2 might be out of business and take up a different job. In the long term, the outside
option might therefore decline and eventually drop below 1/(2 — 20). In this case, the
unique equilibrium is that the expert recommends his bonus action in each period and
consumers would suffer. However, an m-equilibrium is not sensitive to lower outside
options as long as the outside option remains above 1/(2 — 24).

Another caveat, particularly in the context of anonymizing online activity, is that the
model does not address potential extortion arising from abuse of data outside the advice
relationship. According to the model, a customer benefits from personalized advice and
a prerequisite for such personalized advice is that data about past interactions be stored.
If this data gets into the hands of a third party, it could be used by that third party
against the consumer; think health or financial records. Such third-party extortion is
beyond the scope of this paper.

Another interesting result was given in Proposition 7 as it showed that too much
past data can also reduce the consumer’s utility (although it is always higher than his

outside option). Consequently, whether anonymization is optimal or not is ambiguous
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and depends on the particular equilibrium played as well as the model parameters.

8. Conclusion

In this paper, we have studied an expert-consumer relationship in which the expert
gets to know the consumer over time and in this way can give better advice as the
relationship progresses. We have shown that this learning opportunity can be beneficial
to both the consumer and the expert by introducing m-equilibria as a generalization
of simple grim-trigger strategies. Empirical evidence from our laboratory experiment
suggests that experts do indeed give better advice when learning is possible. However,
the consumer must be aware that too much learning on the part of the expert can be
detrimental to consumer welfare. The choice of how much and what data to disclose is

therefore a difficult one.
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Appendix

A. Proofs

Proof of Proposition 1. With g =1—1/[(2p— 1)d11], it is straightforward to determine
I1:12

4p — 3
U= 1wy

Plugging this back into (2) (with equality) yields

2(1 — 6)

T Sy

A non-babbling Markov equilibrium exists if 8* € [0, 1] which is the case if and only if

]

Proof of Lemma 1. Suppose ¥ = 1 and distinguish between the two cases of either
option 1 or option 2 being E’s bonus option (both happen with probability %) E’s

value as a function of « is then

1 1 1
I = 3 (p"6II*" + (1 — p*)oIl*) (1 + @) + 5+ 5(1 — ) (PP + (1 — p*)oI* ! + 1)
1 1 1
= 5(2 —a)+ §5Hk+1(2pka +1—a)+ Eéﬂk(l + o — 2pFa)
ot - 2—« § — da + 2pFa T+

2—6—dat 2000 | 2-6—da+2phsa
This implies

2 b
Hk_ _ Hk—i—l
a=0 2§ + 2§

" _ 1 2p*o k+1

o=l (1 — 6 + pkd) i 2(1 — & + pkd)

where ITF

c_y is E’s equilibrium value in the supposed equilibrium (where E uses the

strategy af = 1) and I1%_ is a deviation value that E would obtain if he deviated from

the supposed equilibrium strategy by choosing o = 0 (without changing his strategy

12As E is indifferent between recommending option 1 and recommending option 2 in case option 2
is his bonus option, his value is as if he always recommended option 1.

27



for k' # k). For o = 1 to be optimal IT*_, > IT*_, has to hold. However, it is now

shown that IT1¥_; > TI¥ for any o > 0. This inequality can be written as

2 ) 2 —« § — da + 2pFda
I+ k+
25 2-6 T2 5 —_dat2ta  2-0—da+2pia
&4 — 20 — 25a + 4pFad + (2 — 6—ba + 2pFad) ST
> 44 b — 20 — 20+ (24 ad — 6 — 2a + 4pFa — 2pFa) ST

& —3ad + 2o + 4ap™s > (1 — 0)(4p*a — 2a)0T1F .

The latter inequality is true for all & > 0 because II**! is bounded from above by
1/(1 — §) (which would be E’s discounted payoff stream if he always recommended his
bonus option and C always continued) and the previous inequality holds with 1/(1 —0)

in place of IT¥+1:

—3a6 + 20+ 4apts > (1 —0)(4p"a — 20[)%
S al2-0) > 0.

This shows that o = 0 is the only best response to 3% = 1 and therefore IT1*_, < TT%_.

Consequently, ¥ = o = 1 cannot be an equilibrium. n

Proof of Lemma 2. Proposition 1 implies V" = V. Suppose V¥ > V, for some k and
let &’ be the highest such k. Then o* must be sufficiently high in order to yield a
higher expected payoff than (1 — §)Vp to C in every period with precision p*. Now
consider C’s decision problem after a miss in a period with precision p*. As V¥ >V,
by the definition of &/, C strictly prefers to continue. Hence, 8 = 1. However, E’s best
response to % =1 is o = 0, see the proof of Lemma 1. But given that V* =V}, for
all k > k' by the definition of k¥’ and given that o = 0 clearly V¥ < Vp contradicting
the definition of k. Hence, V¥ > Vp cannot happen for any k in equilibrium. As C
can always guarantee himself a payoff of V5 by ending the game, this concludes the

proof. O

Proof of Proposition 2. As E is mixing in a non-babbling Markov equilibrium when
the bonus option is option 2, his value will equal the value he would get if he always

recommended option 1 (keeping C’s strategy fixed):

1
I~ = 5+ pPSTIFTY 4 (1 — p*)BroTI”.
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Plugging (6) in for 8% yields

1—pk

1
Hk - k(SHk:—‘rl 1— k 5Hk+1 _

2
4pF — 3

Hk — 5Hk+1 ]
& =2

Recall from the proof of Proposition 1 that II" = (4p™ — 3)/[(4p"™ — 2)(1 — ¢)]. Using
this as a starting point for backward induction in the previous equation yields (8).

Next we will show that IT* is strictly increasing in k. Let h(p*) = (4p* —3)/(4p* —2)
and note that k' > 0 for p* € (1/2,1]. To start, we show by induction that (1 — §)IT* >
h(p*). This is obviously true for k = n. Now suppose (1 — §)II* > h(p*) is true for all
k> j+1, then (1 —0)II = (1 — 85I + (1 — §)h(p/) > Sh(pPP) + (1 =6k (p?) >
h (p’) where the first inequality is the induction hypothesis and the second follows from
the monotonicity of h. Consequently (1 — &)II* > h(p*) for all k € {1,...,n}. As
[FH — I1F = (1 — )" — h(p¥) > h (p**') — h (p*) > 0, it follows that IT* is strictly
increasing in k.

For existence of a non-babbling Markov equilibrium, a 8% € [0, 1] has to exist to
make E indifferent between the two recommendations in case option 2 is the bonus
option. For ¥ = 1, E strictly prefers to recommend option 2. As the incentives to
recommend option 1 are strictly decreasing in 8%, a 8¥ € [0, 1] will exist if and only if E
prefers recommending option 1 (in case option 2 is the bonus option) for 8% = 0. That

is, if

1 + (1 o pk)6Hk+1 S pk§Hk+1
1

o It > ——
— 02k —1)

This condition is most demanding for k = 1 because p* and II* are both increasing in
k. Hence, a non-babbling Markov equilibrium exists if and only if 1> > 1/(6(2p' — 1)).

Plugging in the above derived expression for 12, this is condition (7). O

Proof of Lemma 3. The first claim is proven by a simple strategy copying argument.
To show the monotonicity of II} in k let af be E’s best response strategy to C’s m-
strategy. More precisely, af is the probability with which E recommends option 1 when
it is not the bonus option (after ¢+ misses when the signal precision is p*). To show that
IIE+ > Tk, we will show that E can achieve a value of TI¥ at precision k + 1 (after 0
misses). Note that a signal of precision pF*! is sufficient for a signal of precision p*.
That is, E could inject noise into his signal at precision p**! in order to end up with a
signal of precision p*. Suppose for all E>k+1 (and all t) E injects noise into his signal
-1 k-1

such that the new signal has precision p*~" and then plays the strategy df = oy
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Equivalently, E can use his improved signal and adjust his behavior to inject some noise
in this way.!® Clearly, this will yield a value of II} (at precision k + 1 after 0 misses).
Hence, Hg“ has to be at least II§ (and is usually higher as the described strategy is
not optimal).

Next we show an intermediate result: IIf < IIE™! in every m-equilibrium. To see
this, note that E’s payoffs are bounded from above by 1/(1 — d), i.e. the value of
recommending the bonus option each period and C never stopping the game. Put
differently, per period payoffs are below 1. This implies (1 —¢)IIE™ < 1. Now suppose,
by way of contradiction, ITF > TIf**. Then also II¥ | > TIE*! because E can after
t — 1 misses simply recommend his bonus option which would then give him a value of
1+ 0T1F /2 + 6TIE /2 > 1+ ST > TIE™ where the first inequality uses TIF > TI5+!
and the second inequality uses (1 — 0)IIF™ < 1. Hence, I1¥ | > TIE*!. Tterating this
argument yields IT5 > II5*!. However, 15 > TIE*! contradicts the first result of Lemma
3 shown above. Hence, I1F < HSH holds in every m-equilibrium.

I1% > 117, | is shown using the intermediate result of the previous paragraph. Let E
recommend his bonus option after ¢ misses (at precision k). This (possibly non-optimal
strategy) yields a value of 1+ 0II§™" /2 + 0T1F, /2 > 1 + SIIF, | > II¥,, where the first
inequality uses HfH < ng“ (see previous paragraph) and the second inequality uses
¥, <1/(1—46). As recommending E’s bonus option after ¢ misses yields a value of

at least II}, |, the result I} > II}, | follows. O

Proof of Lemma 4. I* is the smallest natural number ¢ such that after ¢ consecutive
misses, it is optimal for the expert to recommend option 1. We can thus take condition
(9) and replace t — 1 by ¢. Then, it can be written as II¥ ; < TI§* — m. Hence [*
is the smallest natural number ¢ for which the latter condition holds. More explicitely,

1
lk = mln{t < N|Hf+1 S Hg+1 — m}
: k k+1 1
= max 0,m1n{t€N|Ht SHO —m}—l
p JR—

=)

BMore precisely, let ,ch = (pf“ — pic’l)/(p’_C — 1/2). This is chosen such that drawing from the
prior with probability 'y~ and with the counter probability from a signal technology with precision
p" yields a signal of precision p*~!.
with probability 1 — v¥/2 and option 2 with probability */2. If option 2 is the bonus option, let

aF = (1 =~F/2)af 1 + (v%/2)(1 — aF~1). This yields ITF = TI}~1.

If option 1 is the bonus option, let E recommend option 1
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Using formula (10), we can reformulate the condition (x) via

m—1—t
(1 1
= o(1 — ARV AN k(SHk+1 <Hk:+1_—
(0 3 6=y (G s - e
m—1—t H16:+1_( 1 ;
= 5(1—=p")) < 21
(6( p)) < %—i—pk(ﬂ_[gﬂ

-~

=P

<

J/

L— (01 —ph)m
1—46(1—pk)
S1—(1=6(1=p")P < (6(1—p")m"

~ ~~ N——
(A =:B

|

<

Looking at this last inequality, we see that it is always satisfied if A < 0 and that it is
never satisfied if P < 0 (which is equivalent to TIE*! < M). These cases correspond
to ¥ = 0 and ¥ = m, respectively. In all the other cases, we can apply the natural

logarithm on both sides since they will be positive. We continue:

= In(A) < (m —t)In(B)

& Ellégi >m—t (as In(B) < 0)
St>m— In(A)
- In(B)
This implies that (¥ = [m —-1- %—‘ whenever the number inside the ceiling function
is larger than -1 and [*¥ = 0 else. O]

Proof of Lemma 5. Define T1,(Tly) (for t € {0,1,...,m}) by iterating backwards start-

ing from II,,, = 0 and using the following formula:

i, (T = 1/2 + p"6Ily +~(1 — p")6IL(To) if Ty — I1,(ITo) > 55 a7
1+ %(51‘[0 + %(5Ht(H0) else.
Note that the case distinction is done such that II; is continuous (ﬁt—l(HO) is simply the
maximum of the expression in the first and second case). Clearly, the derivative ﬁ;nq
exists for almost all values of IIy and is in {0/2, p"d}. Hence, II', |, < 6 < 1. Tterating
backwards, I, is continuous and its derivative exists for almost all II,. Furthermore,
I, (Ty) € {p"6 + (1 — p™)dII;(I1y), §/2 + 611,(y) /2} and therefore — given that I, < &
— we have II,_, < 6. In particular, IIy(II,) is continuous and has a derivative (which
exists almost everywhere) that is strictly positive and strictly smaller than § < 1. The

operator I, is therefore a contraction and the equation ﬁo(Hg) = IIp has a unique
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solution IIj by the contraction mapping theorem.

Next we show that II§ € (0,1/(1 — §)). To this purpose it is sufficient to show
IIo(0) > 0 and IIy(1/(1 — &) < 1/(1 —6). Clearly, II,_1(0) > 0 and in particular
I15(0) > 0 holds. Turning to IIo(1/(1 — §)) < 1/(1 — §), note that I,,_1(1/(1 — §)) <
1/(1 —9) as both 1/2 +p"§/(1 —9) < 1/(1 =) and 1 +6/(2(1 —9)) < 1/(1 — )
hold. Now proceeding by backward induction II,_;((1/(1 — §)) < 1/(1 — 6) given that
T,((1/(1 — &) < 1/(1 — &) as both 1/2 + p*6/(1 — &) + (1 — p™)d/(1 — §) < 1/(1 —6)
and 1 +9/(2(1 —9))+0/(2(1 —0)) < 1/(1 —6) hold. Given that IIfj € (0,1/(1 — ¢)),
also I1,_1(I13) € (0,1/(1 — §)) for all t € {1,...,m} by the same steps.

Note that E’s value when playing best response against an m-strategy has to satisfy
17 = IL,(T1}) for all t € {0,...,m — 1}. As we have just shown, there exists a unique
solution to this condition and this solution is feasible, i.e. E’s value is in (0,1/(1 —§)).
E’s best response strategy is given by the case distinctions in (17): If II§ — 1:[,5(1'[3) >
1/(6(2p"—1)), then E recommends option 1 after t—1 misses. Otherwise, E recommends
his bonus option. Finally, note that E’s best response is a cutoff strategy as ﬂt(Hé) is

decreasing in t. This can be shown as in the proof of Lemma 3. O]

Proof of Proposition 3. By (1), an m-equilibrium cannot exist if E always recommends

his bonus option. This strategy yields a payoff after 0 misses of

m—1

M= (g) (14 011p/2) = L+ 5H0{2_)(51/; /2")

=0
which can be solved for Il yielding

L 1=2"
01— 54 (6/2)m L

Always recommending the bonus option is not E’s best response if after m — 1 misses

(9) holds with IT; in place of TI§ ™" and zero in place of I1f, ;, i.e. if

-2 1
1— 6+ (6/2)™ = §(2pn — 1)’

If the opposite of this inequality holds, then always recommending the bonus option
is E’s best response to C’s m-strategy (and this best response is unique by Lemma 5)
and therefore no m-equilibrium can exist. This gives the condition in (13). If (13)
does not hold, then E’s unique best response to C’s m-strategy includes recommending
option 1 after m-1 misses. This implies that C’s value when using his m-strategy is
strictly above (1/2)/(1—0) (given that Vj satisfies (1)) and therefore there exist values
of Vo > (1/2)/(1 — 0) such that C’s value is above Vp if C plays an m-strategy and E
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plays his best response to this strategy. O]

Proof of Proposition 4. We compute E’s conditional value depending on the event w €
W that occured and then sum over all possible events (making a distinction between
histories in which learning level n is reached and those in which the advice relationship

was dissolved before). More concretely, we get

ZIP’ E(Il|w = w).

weWwW
For w € W, we get
n—1
P('LU = U_J) = H P(wl ]l{w <’} + ]l{w>lz}(1)ll(1 — pi)wiiliilpi
i i=1 "~ ' 2 7
n—1 - »
E(Mplw = @) = Y~ Hyd==1™ 4 §2i=1 “iC,,
k=1

In the above equation, Hj, denotes the expert’s expected value in learning level p* (in
which he will spend wj, periods). Moreover, C,_; is the expert’s continuation value
after the (n — 1)—th hit at the first period with learning level p™. Both Hy and C,_4

are computed below.

Wy —1 k-1 wk 1
Hy=1ggcny > 0"+ Ligupy | > 0"+ Z K (18)
h=0 h=0 h 1k
m—1 5 6 m—1 1
_ 99 O\g+1 2N §9(1 — n g(Z\9—I" 1
Gt = LG + GG+ LG 0 =) PO+ (19)

o (37 + X 093"
L= 2 (e = Sy (D as(1 = pryo e

= Cn—l -

In the above computations, (18) follows since the expert will recommend his bonus
option [* times after reaching a new learning level (assuming that all these recommen-
dations produce misses). Only after /¥ misses, he will recommend option 1, which yields
him % per period in expectation, since bonus option and option 1 are drawn indepen-
dently. Equation (19) reflects the fact that the experts continuation value after n — 1
hits and after n hits (or more) is the same, since no further learning happens after

precision p” is reached.
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For w € Wy, we get

len(w)
Pw=w)= [] P(w; =)
i=1
L ptenca) len(w)ym—1'en(®) o L s, Ly i —li—1, i
= (5) (1 —p™) H ﬂ{wigﬁ}(é) "+ ]l{wi>n}(§) (L—=p)" "7 p" ),
=1
(20)
len(w)—1 len () Jlen(®) 1 1 m—1
k-1 - en(w)—1 _
Eplw = @) = Y Hpd=i=t® 4 5%=r % [ Y~ g4 5 oot (2
k=1 h=0 h=llen(®)

Equation (20) follows since m consecutive misses in learning level len(w) only occur if
the bonus option was different from option 1 for I*™®) periods in a row and the expert
failed to generate good advice in the remaining m — [**®) periods. Likewise, the term
in the brackets in (21) describes the expected payoff of the expert in the learning level
in which m consecutive misses are produced. Putting all the above formulas together
yields the desired result. O]

Proof of Proposition 5. The probability of having m consecutive misses conditional on
reaching precision level k£ does of course not only depend on the precision level, but also

on the strategy [* of the expert. More concretely,

HR(E) = (%) (1 -y

As 1—p* < 1 for all k by assumption, for (weakly) decreasing values of [ (i.e. IF < [¥)
the hazard rate HR(k) is (strictly) decreasing in k. When [* is strictly increasing, then
it cannot increase to [**' = m by Remark 1. Hence, we always have m — [**1 > 0 in
this case. We now derive the sufficient condition for the hazard rate to be (weakly)

decreasing:

lk:+1

HR(k+1) < HR(k) < (1) (1= phrhym=1"" < (%) (1 — pkym=t*

2
1 1—pF
o (—F < (—L
(2(1—19’“)) B (1—29’““)
Since the LHS of the last inequality is increasing in [**! and decreasing in ¥ and

the RHS is decreasing in [*!, it is sufficient to consider [¥*1 = m — 1 and (¥ = 0 (the

extreme cases), which yields

lk

A\

lk+1—lk m_lk+1
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1 m—1 1_pk
k+1 kymaom—1
e e A

PN pk+1 Z 1 - (1 - pk)m2m71

This concludes the proof. O

Proof of Proposition 6. We will show by induction that /¥ = 1 implies [*~! = 1 in an
m = 1 equilibrium. However, note first that [ = 0 in an m = 1 equilibrium as the
consumer would otherwise be better off by ending the advice relationship immediately
when reaching precision level p™.

Now assume that (¥ = 1 for some k € {2,...,n—1}. This implies that the expected
payoff of the expert when choosing I* = 1, namely 1 + §II5*!/2, is greater or equal
than his expected payoff when choosing (¥ = 0, namely 1/2 + p*dTIE™!. Put differently,
14+ 0TIET! /2 > 1/2 4 pFSTIET or equivalently 0 > —1/2+6TI5 ™ (p* —1/2). As 0 < ITF <
IE* and 1/2 < pF=! < p* this inequality implies 0 > —1/2 + §IIE(p*~' — 1/2) which
is equivalent to saying that the expected payoff of the expert is higher when choosing
[*=1 =1 than when choosing [¥~! = 0. Consequently, /¥ = 1 implies ¥~ = 1.

Hence, in an m = 1 equilibrium * = 1 for k < k and ¥ = 0 for k > k for some
k€ {0,...,n}. The result on VJ¥ now readily follows as an increase in k improves the
quality of advice in two ways: (i) [¥ may decrease and, (ii) p* increases.

More formally, Vg* = p*(1 + V7)) < Vg = p*/(1 — p"d) and V§ = pF(1 +
SVIEH) for k € {k+1,...,n —1}. For now let k& < n — 2, then VJ* > V" holds
as p"/(1 —dop") > p"t (1 +6p"/(1—dp") < pl/pt < (1 —p")/(1—p") =1
which is true by p"~! < p™.'* Using this as the starting point for backward induction
VE = pF(1+ 6VFE) > pF=1(1 4+ §V§F) = VF~! by the induction hypothesis VFT > Vi
and p* > p*~! for all k — 1 > k. The backward induction logic extends to k where
VE = (14 0VF) /2 < phtt (1 +5%}5+2> = VF by 1/2 < pP+1and VFFD < V2,
The backward induction argument continues further for k¥ < k as there V¥ = (1 +
SV /2 < (1 + 0VFE?)/2 = VF! where the inequality follows from the induction

hypothesis Vit < V2, O

Proof of Lemma 6. We are using formulas (10) and (11) to compute the expert’s value

I12 for different values of /2,

14 (Clearly, the argument below still holds true for the case k = n — 1.
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This implies that 2 = 1 yields a higher expected value than [? = 0 for the expert if

1— %5 < 2(1 - p%6)
1

1
2p2—§

S6 <

holds. The only thing that is left to check now is what the optimal choice for {! is in

each of the two cases above.

i)

1 ptd
llz le_ 151—[2:_
0 =11, 2+p 0 (1= %)
11:1;»H1:1+§H2=1+L
0 20 4(1 — p26)

1 p'o ) (Pt—3) 1 1
ST §> — -
2 o) A ) 2T

Hence, in the case [2 = O the expert will choose I! = 0 if § > m and he will
2

choose I' = 1if § < 1+2 AT holds.
i)
1 1 plo
'=0=1I)=-+p'dllj ==
T T TP T TS
) 0
P=1=1=1+-I=1+-—-
= T =t
1 plé ) 1
-+ >1‘|‘—<=>5>—
2 1-15 25 op— 1

1 l2_

Since the latter equation is never satisfied for [ = 1 due to § < 2p2171 < T
2 2
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1 always implies ! = 1.
This completes the proof. O

Proof of Lemma 7. Solving via backward induction, we start determining [ by going

through three different cases.

1. [* = 0: Then 11} = 1/2 + p?$I1 and I3 = 1/2 + p*§T13 + (1 — p?)d112. Plugging

the first expression into the second one and solving for T2 yields

(1+6)/2 — 6p2/2

I = :
O 1= p2 (1 - p?)p?

(22)

2. [ =1: Then IT? = 1/2+ p?011% and T3 = 1 + 6113 /2 + 6113 /2 which can be solved

for

. 1446/4
1 —-6/2—6%p%/2°

15 (23)

3. [ =2: Then IT? = 1+ 6112/2 and II3 = 1 + §I13/2 + 6112 /2 which can be solved

for

 1+4)2
C1—-6/2—62/4

IT; (24)

Therefore, [> = 1 is the expert’s best response if and only if

1+4/4 . 1+46/2 (1+0)/2 —6*p*/2
1—6/2—62p2)2 1—6/2—62/4"1—p26 — (1 —p2)02p2 [~

Conditional on [2 = 1 being the expert’s best response in learning level 2, we will now
check under which conditions ! = 0 is the expert’s best response in learning level 1.

Again, we have to go through three cases.

1. I* =0: Then I} = 1/2 + p'éT12 and 1T} = 1/2 + p' 6112 + (1 — p')dI1}. Plugging in
yields

1 1—phH)é W14 (1 —pHe)(1+45/4
Hé:_Jr( p)o PO+ (1 —p)o)(1+0/4)
2 2 1—0/2 — 62p%/2

2. ' =1: Then IT} = 1/2 + p'6II13 and II} = 1 + 6113 /2 + 6111 /2. Plugging in yields

(6/2 4 6%p'/2)(1 +6/4)
1—06/2—6%p2/2

I =1+6/4+
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3. I' =2: Then I} = 1+ 6112/2 and ITj = 1 + 113 /2 + 11} /2. Plugging in yields

(6/2+62/4)(146/4)
1—06/2—6%p2/2

M =1+0/2+

Therefore, I! = 0 will be the expert’s best response if and only if

1, (A=pho  plo(+ (1 -pho)(1+5/4)
2 2 1—6/2—62p2/2
(6/2 4 6%pt/2)(1 +6/4)

1—6/2—0%p2/2

2max{1+(5/4+ A+6/2+

(6/2462/4)(1+6/4)
1—6/2— 62p2/2 } '

B. Experiment Instructions

B.1. Control Group

Freiwilligkeit des Experimentes

Die Teilnahme an diesem Experiment ist freiwillig. Sie kénnen die Teilnahme jederzeit

ohne Angabe von Griinden abbrechen.

Instruktionen

Bitte lesen Sie die folgenden Instruktionen sorgfiltig. Vor dem Experiment bekom-
men Sie einige Kontrollfragen gestellt und Sie kénnen bei korrekter Beantwortung Geld
gewinnen. Konkret werden Ihnen vier Kontrollfragen gestellt. Hiervon wird nach Ihren
Antworten eine zufillig ausgew#hlt und wenn Ihre Antwort auf diese Frage beim ersten
Versuch richtig war, bekommen Sie eine zusétzliche Auszahlung von 1,00€.

Im Folgenden werden Sie zuféllig in Zweiergruppen eingeteilt und werden mit Threm
zugeteilten Spielpartner ein Spiel spielen. In diesem Spiel kénnen Sie Spielpunkte erspie-
len. Auf Basis dieser Spielpunkte wird am Ende Ihre Auszahlung ermittelt, was weiter
unten erlautert wird. Zusétzlich erhalten Sie eine hiervon unabhéngige Auszahlung von
4,00€ fiir das Erscheinen und Ihre Teilnahme am Experiment. In dem Spiel werden Sie
zufillig entweder die Rolle von Spieler A oder von Spieler B iibernehmen. Das Spiel
wird nun beschrieben und danach anhand eines Beispiels fiir zwei Spielrunden veran-
schaulicht. Dort sehen Sie auch beispielhaft die Bildschirmanzeigen, die beiden Spielern

jeweils angezeigt werden.

Entscheidungen der Spieler

Das Spiel wird iiber mehrere Runden gespielt und in jeder Runde hat Spieler A die
Wahl zwischen Option 1 und Option 2 und Spieler B entscheidet in der Folge, ob eine
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weitere Runde des Spiels gespielt wird. Es gibt in jeder Runde vier mogliche Fille, die

alle gleich wahrscheinlich sind und vor jeder neuen Runde zufillig bestimmt werden.

Auszahlungen der Spieler bei Wahl von

Fille Option 1 Option 2

1. Fall | A: , B: A: 0 Punkte, B: 0 Punkte
2. Fall | A: 0 Punkte, B: 0 Punkte A: , B:

3. Fall | A: , B: 0 Punkte  A: 0 Punkte, B:

4. Fall | A: 0 Punkte, B: A: , B: 0 Punkte

Abbildung 1: Ubersicht iiber die moglichen Auszahlungen fiir Spieler A und B

In jedem moglichen Fall erhélt also jeder Spieler eine Auszahlung von 1 von genau
einer der beiden Optionen, wihrend die andere Option ihm eine Auszahlung von 0 gibt.
Die Option mit der hoheren Auszahlung kann entweder fiir beide Spieler die gleiche oder
aber eine unterschiedliche sein.

In jeder Spielrunde tritt genau einer der obigen Fille ein, aber keiner der Spieler
weifl mit Sicherheit, welcher das ist. Spieler A bekommt jedoch immer angezeigt fiir
welche der Optionen er einen Punkt erhélt. Dariiber hinaus erhélt er einen automatisch
erzeugten Hinweis dariiber, welche Option Spieler B einen Punkt einbringen kdnnte.
Dieser Hinweis ist immer mit einer Wahrscheinlichkeit von 82% korrekt und mit einer
Wabhrscheinlichkeit von 18% inkorrekt.

Nach der Entscheidung von Spieler A werden beide Spieler iiber ihre daraus resul-
tierenden Auszahlungen informiert. Spieler B erfahrt hierbei nur, ob er eine Auszahlung
von 1 oder 0 (Spielpunkten) erhélt und nicht, was der Hinweis von Spieler A war oder
welche Auszahlung Spieler A erhalten hat. Spieler A wird hingegen auch iiber die
Auszahlung von Spieler B informiert. Spieler B kann also keine der Optionen selbst
wihlen, sondern erhélt seine Auszahlung abhéingig von der Wahl von Spieler A. Im An-
schluss daran kann Spieler B entscheiden, ob er das Spiel beenden oder fiir eine weitere
Runde fortfiihren mochte.

e Spieler B wahlt fortfiihren:
In diesem Fall wird mit einer Wahrscheinlichkeit von 90% eine weitere Runde des
Spiels gespielt.
Mit einer Wahrscheinlichkeit von 10% endet das Spiel trotz der Entscheidung
von Spieler B das Spiel fortzufithren (sonst konnte das Spiel theoretisch unendlich
lange dauern). Beide Spieler erhalten ihre bis dahin erspielten Spielpunkte. Beide

Spieler erhalten die Nachricht, dass das Spiel exogen beendet wurde.

e Spieler B wahlt beenden:
In diesem Fall bekommt Spieler B zusétzlich 5 Spielpunkte gutgeschrieben, Spieler
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A erhélt keine weiteren Punkte. Das Spiel ist zu Ende und beide Spieler werden

dariiber informiert, dass Spieler B das Spiel beendet hat.

Jede Runde des Spiels kann wie folgt in einem Schaubild veranschaulicht werden:

A beobachtet setne — B beobachtet die -

Auszahlungsoption A wahlt . B wihlt
8 i eigene Auszahlung, -

und erhélt Option . fortfithren
L , A beobachtet beide
Hinweis {iber B’s 1 oder 2 A oder beenden
: uszahlungen
Auszahlungsoption

Neues Spiel mit neuem Spielpartner

Sobald ein Spiel fiir alle Spieler beendet ist (entweder exogen oder weil alle Spieler B
ihr Spiel beendet haben), werden die Spielpartner neu zugelost. Jeder behélt hierbei
jedoch seine Rolle als Spieler A oder Spieler B und bekommt zuféllig einen Spieler des
anderen Typs zugelost. Das Spiel wird erneut gestartet. Insgesamt werden 10 Spiele
mit wechselnden Spielpartnern durchgefiithrt. Am Ende wird zuféllig eines der 10 Spiele
ausgewahlt und die dort erspielte Punktzahl wird nach Beendigung des Experimentes
(zusammen mit der festen Auszahlung) ausgezahlt. Ein Spielpunkt entspricht hierbei
1,00€.

Beispiel
In dem folgenden Beispiel (siche Abbildung 1) wahlt Spieler A in der ersten Runde Op-
tion 1 (oben links im Bild). Im Folgenden werden beide Spieler dariiber informiert, dass
diese Wahl Spieler B eine Auszahlung von 0 einbringt (zu sehen ist nur der Bildschirm
von Spieler B, oben rechts). Spieler A kann so feststellen, dass sein Hinweis iiber Spieler
B in Runde 1 korrekt war, da der Hinweis Option 2 lautete und Option 1 Spieler B eine
Auszahlung von 0 einbrachte. Somit hétte Option 2 tatsdchlich in einer Auszahlung
von 1 fiir Spieler B resultiert. Spieler B weif} allerdings weder welchen Hinweis Spieler
A erhalten hat, noch ob Spieler A diesem Hinweis gefolgt ist.

Im Beispiel entscheidet sich Spieler B fiir "Spiel fortfithren” und es wird eine zweite
Runde gespielt. Nun entscheidet sich Spieler A fiir Option 2 (Bild unten links). Diese
Walhl fithrt zu einer Auszahlung von 1 fiir Spieler B (siehe Bild unten rechts). Spieler

B kann nun wieder entscheiden, ob er das Spiel fortfiihren oder beenden mochte.

Ende des Experimentes

Zum Ende des Experimentes bekommen Sie noch ein paar Fragen gestellt, bei denen
Sie teilweise Geld gewinnen koénnen (dies ist dann jeweils vor Beantwortung der Fragen
erkldrt). Zuletzt geben Sie iiber ein Formular Thre Auszahlungsdaten ein, die von der

Universitéat zur Tatigung der Zahlung benétigt werden.
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Erzielte Auszahlungen fiir Spieler B Spieler A hat die Option ausgewahlt, die lhnen eine Auszahlung

von 0 einbringt.
Sie erhalten eine Auszahlung von einem Punkt fiir Option 1.

Erzielte Auszahlungen
0,

Der Hinweis fiir Spieler B lautet: Option 2. Méchten Sie das Spiel beenden oder fortfihren?

Welche Option méchten Sie wahlen?

Erzielte Auszahlungen fiir Spieler B X X . . i X
0 Spieler A hat die Option ausgewahlt, die Ilhnen eine Auszahlung

von 1 einbringt.

Sie erhalten eine Auszahlung von einem Punkt fiir Option 2. Ersielte Auszahlungen
0,1

Mchten Sie das Spiel beenden oder fortfiihren?

Der Hinweis flir Spieler B lautet: Option 2.

Welche Option méchten Sie wahlen?

Abbildung 2: Ein Beispiel fiir die ersten zwei Spielrunden

B.2. Treatment Group

Freiwilligkeit des Experimentes

Die Teilnahme an diesem Experiment ist freiwillig. Sie kénnen die Teilnahme jederzeit

ohne Angabe von Griinden abbrechen.

Instruktionen

Bitte lesen Sie die folgenden Instruktionen sorgfiltig. Vor dem Experiment bekom-
men Sie einige Kontrollfragen gestellt und Sie kénnen bei korrekter Beantwortung Geld
gewinnen. Konkret werden Ihnen fiinf Kontrollfragen gestellt. Hiervon wird nach Ihren
Antworten eine zuféllig ausgew#hlt und wenn Thre Antwort auf diese Frage beim ersten
Versuch richtig war, bekommen Sie eine zusétzliche Auszahlung von 1,00€.

Im Folgenden werden Sie zuféllig in Zweiergruppen eingeteilt und werden mit Threm
zugeteilten Spielpartner ein Spiel spielen. In diesem Spiel konnen Sie Spielpunkte erspie-
len. Auf Basis dieser Spielpunkte wird am Ende Ihre Auszahlung ermittelt, was weiter
unten erldutert wird. Zusétzlich erhalten Sie eine hiervon unabhéngige Auszahlung von
4,00€ fiir das Erscheinen und Ihre Teilnahme am Experiment. In dem Spiel werden Sie
zufillig entweder die Rolle von Spieler A oder von Spieler B iibernehmen. Das Spiel
wird nun beschrieben und danach anhand eines Beispiels fiir zwei Spielrunden veran-
schaulicht. Dort sehen Sie auch beispielhaft die Bildschirmanzeigen, die beiden Spielern

jeweils angezeigt werden.

Entscheidungen der Spieler

Das Spiel wird iiber mehrere Runden gespielt und in jeder Runde hat Spieler A die
Wahl zwischen Option 1 und Option 2 und Spieler B entscheidet in der Folge, ob eine
weitere Runde des Spiels gespielt wird. Es gibt in jeder Runde vier mogliche Fille, die

alle gleich wahrscheinlich sind und vor jeder neuen Runde zuféllig bestimmt werden.
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Auszahlungen der Spieler bei Wahl von

Fille Option 1 Option 2

1. Fall | A: , B: A: 0 Punkte, B: 0 Punkte
2. Fall | A: 0 Punkte, B: 0 Punkte A: , B:

3. Fall | A: , B: 0 Punkte  A: 0 Punkte, B:

4. Fall | A: 0 Punkte, B: A: , B: 0 Punkte

Abbildung 1: Ubersicht iiber die méglichen Auszahlungen fiir Spieler A und B

In jedem moglichen Fall erhélt also jeder Spieler eine Auszahlung von 1 von genau
einer der beiden Optionen, wiahrend die andere Option ihm eine Auszahlung von 0 gibt.
Die Option mit der hoheren Auszahlung kann entweder fiir beide Spieler die gleiche oder
aber eine unterschiedliche sein.

In jeder Spielrunde tritt genau einer der obigen Félle ein, aber keiner der Spieler
weil mit Sicherheit, welcher das ist. Spieler A bekommt jedoch immer angezeigt fiir
welche der Optionen er einen Punkt erhélt. Dariiber hinaus erhélt er einen automatisch
erzeugten Hinweis dariiber, welche Option Spieler B einen Punkt einbringen kdnnte.
Dieser Hinweis ist in der ersten Runde mit einer Wahrscheinlichkeit von 82% korrekt
und mit einer Wahrscheinlichkeit von 18% inkorrekt. Die Wahrscheinlichkeit, mit der
der Hinweis korrekt ist, nennen wir in dem Experiment die Hinweisstarke. Sie wird
immer als Dezimalzahl angegeben. Eine Hinweisstérke von 0,82 entspricht zum Beispiel
einer Wahrscheinlichkeit von 82%, eine Hinweisstiarke von 0,84 entspricht 84%, usw.

Nach der Entscheidung von Spieler A werden beide Spieler iiber ihre daraus resul-
tierenden Auszahlungen informiert. Spieler B erfahrt hierbei nur, ob er eine Auszahlung
von 1 oder 0 (Spielpunkten) erhélt und nicht, was der Hinweis von Spieler A war oder
welche Auszahlung Spieler A erhalten hat. Spieler A wird hingegen auch {iber die
Auszahlung von Spieler B informiert. Spieler B kann also keine der Optionen selbst
wihlen, sondern erhélt seine Auszahlung abhéngig von der Wahl von Spieler A. Im An-
schluss daran kann Spieler B entscheiden, ob er das Spiel beenden oder fiir eine weitere
Runde fortfiihren mochte.

e Spieler B wahlt fortfiihren:
In diesem Fall wird mit einer Wahrscheinlichkeit von 90% eine weitere Runde des
Spiels gespielt. Falls Spieler B in der aktuellen Runde eine Auszahlung von einem
Spielpunkt erhalten hat, wird in den folgenden Runden der Hinweis, den Spieler A
erhélt, verbessert: Die Wahrscheinlichkeit, mit der der Hinweis korrekt ist, erhéht
sich um 2% (die Hinweisstérke erhoht sich also um 0,02). Falls Spieler B in der
aktuellen Runde eine Auszahlung von null Spielpunkten erhalten hat, bleibt die

Hinweisstérke genau wie in der vorherigen Runde.

Mit einer Wahrscheinlichkeit von 10% endet das Spiel trotz der Entscheidung
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von Spieler B das Spiel fortzufithren (sonst konnte das Spiel theoretisch unendlich
lange dauern). Beide Spieler erhalten ihre bis dahin erspielten Spielpunkte. Beide

Spieler erhalten die Nachricht, dass das Spiel exogen beendet wurde.

e Spieler B wihlt beenden:
In diesem Fall bekommt Spieler B zusétzlich 5 Spielpunkte gutgeschrieben, Spieler
A erhélt keine weiteren Punkte. Das Spiel ist zu Ende und beide Spieler werden

dariiber informiert, dass Spieler B das Spiel beendet hat.

Sofern das Spiel iiber mehrere Runden fortgefiithrt wird, verbessert sich der Hinweis
auch in folgenden Runden (sofern Spieler B eine Auszahlung von einem Punkt erhilt).
Hierbei erhoht sich die Wahrscheinlichkeit, dass der Hinweis definitiv korrekt ist jeweils
um 2%. Die maximale Wahrscheinlichkeit ist jedoch 90%. Sollte in einer Runde also
diese Wahrscheinlichkeit erreicht sein und Spieler B erhélt in dieser Runde nochmals
eine Auszahlung von 1, so bleibt die Wahrscheinlichkeit auch in allen folgenden Runden
bei 90%.

Jede Runde des Spiels kann wie folgt in einem Schaubild veranschaulicht werden:

[ A beobachtet seine | -

Auszahlungsoption B beobachtet die B wihlt
and erhilt eigene Auszahlung, fortfiih
Hinweis iiber B’ A beobachtet beide dortbu redn
AuszZElirlllgseopti(?n Auszahlungen —

Neues Spiel mit neuem Spielpartner

Sobald ein Spiel fiir alle Spieler beendet ist (entweder exogen oder weil alle Spieler B
ihr Spiel beendet haben), werden die Spielpartner neu zugelost. Jeder behélt hierbei
jedoch seine Rolle als Spieler A oder Spieler B und bekommt zufillig einen Spieler des
anderen Typs zugelost. Das Spiel wird erneut gestartet. Insgesamt werden 10 Spiele
mit wechselnden Spielpartnern durchgefithrt. Am Ende wird zufillig eines der 10 Spiele
ausgewdhlt und die dort erspielte Punktzahl wird nach Beendigung des Experimentes

(zusammen mit der festen Auszahlung) ausgezahlt. Ein Spielpunkt entspricht hierbei
1,00€.

Beispiel

In dem folgenden Beispiel (siche Abbildung 1) wéhlt Spieler A in der ersten Runde Op-
tion 1 (oben links im Bild). Im Folgenden werden beide Spieler dariiber informiert, dass
diese Wahl Spieler B eine Auszahlung von 0 einbringt (zu sehen ist nur der Bildschirm
von Spieler B, oben rechts). Spieler A kann so feststellen, dass sein Hinweis tiber Spieler

B in Runde 1 korrekt war, da der Hinweis Option 2 lautete und Option 1 Spieler B eine
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Auszahlung von 0 einbrachte. Somit hatte Option 2 tatsdchlich in einer Auszahlung
von 1 fiir Spieler B resultiert. Spieler B weif} allerdings weder welchen Hinweis Spieler

A erhalten hat, noch ob Spieler A diesem Hinweis gefolgt ist.

Die aktuelle Hinweisstarke ist 0,8.

Hinweisstidrke  Erzielte Auszahlungen fiir Spieler B Die Hinweisstarke in der nachsten Runde wiirde 0,8 sein, weil
0,8 Spieler A die Option ausgewahlt hat, die lhnen eine Auszahlung
0,82 von 0 einbringt.

Ol 84 Hinweisstirke Erzielte Auszahlungen

0‘86 08 0,

0,88 o

0,86
Sie erhalten eine Auszahlung von einem Punkt fiir Option 1. o8

Mbchten Sie das Spiel beenden oder fortfiihren?

Der Hinweis fiir Spieler B lautet: Option 2.
‘‘‘‘‘‘‘‘‘ ! e e ¥ F
Spiel beenden
Welche Option méchten Sie wahlen?
Spiel fortfiihren

Die aktuelle Hinweisstarke ist 0,8.

Hinweisstérke Erzielte Auszahlungen fiir Spieler B Die Hinweisstarke in der nachsten Runde wiirde 0,82 sein, weil
038 0, Spieler A die Option ausgewahlt hat, die Ihnen eine Auszahlung
0,82 von 1 einbringt.

0,84 Hinweisstérke Erzielte Auszahlungen

0,86 08 01

0,88

Sie erhalten eine Auszahlung von einem Punkt fiir Option 2.

Der Hinweis fiir Spieler B lautet: Option 1.

Spiel beenden

Welche Option méchten Sie wahlen?

1 Spiel fortfihren

Abbildung 2: Ein Beispiel fiir die ersten zwei Spielrunden

Im Beispiel entscheidet sich Spieler B fiir "Spiel fortfithren” und es wird eine zweite
Runde gespielt. In der zweiten Runde ist die Hinweisstirke dann wiederum 0,82, da
Spieler B in der ersten Runde eine Auszahlung von 0 erreicht hat. Nun entscheidet
sich Spieler A fiir Option 2 (Bild unten links). Diese Wahl fiihrt zu einer Auszahlung
von 1 fiir Spieler B (siehe Bild unten rechts). Spieler B kann nun wieder entscheiden,
ob er das Spiel fortfithren oder beenden méchte und wird dariiber informiert, dass die
Hinweisstéarke in der ndchsten Runde 0,84 wére. Hétte Spieler B in der zweiten Runde
eine Auszahlung von 0 erhalten, so wére die Hinweisstdrke in der néchsten Runde
weiterhin bei 0,82 geblieben. Die Hinweisstdarke erhoht sich immer nur dann, wenn

Spieler B in einer Runde eine Auszahlung von 1 erhélt.

Ende des Experimentes

Zum Ende des Experimentes bekommen Sie noch ein paar Fragen gestellt, bei denen
Sie teilweise Geld gewinnen konnen (dies ist dann jeweils vor Beantwortung der Fragen
erklart). Zuletzt geben Sie iiber ein Formular Thre Auszahlungsdaten ein, die von der

Universitéat zur Tatigung der Zahlung bendtigt werden.
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C. Additional Results and Robustness Checks

In this section, we will provide additional results and robustness checks related to the
experimental results given in Section 6. We will have a further look at advice quality,

welfare distribution and hazard rates in turn.

C.1. Advice Quality
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Figure 7: Robustness Checks for Advice Quality

Figure 7 shows the robustness checks for advice quality. In Figure 7a, we only
considered those experts who gave at most one incorrect answer to the check questions.
We can see that the advice quality in the treatment group is still higher, but the
difference becomes a bit less significant. The same happens when we take out the first
two supergames in each session, where players might still have been learning the game.
This is shown in Figure 7b. Lastly, we looked at advice quality per learning level in
the treatment group. The results can be seen in Figure 7c. It turns out that advice in
the learning levels pg, p1, po and py4 is significantly higher than that given in the control
group. However, the average advice quality in learning level p3 is lower than in the
control group. A potential explanation for the low advice quality in this level is the

gambling effect: Experts feel that their signal strength is sufficiently high to generate
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fitting advice on the spot such that they will take their bonus and hope to appease the
consumer in the next period. It is also noteworthy that the advice quality in learning
level p, is significantly higher than in all other learning levels as well as in the control
group. This effect cannot be explained by a better signal quality, since advice quality
is measured by the share of tradeoff-situations (bonus option = option 2), in which the
adviser decides to give useful advice instead of receiving his bonus. The signal quality
only affects how often this decision will actually translate to the intended payoff of one
to the consumer. A reason for the high advice quality in learning level ps could be a
selection effect: The majority of advisers who reached learning level p, in their advice
relationship probably did so because they gave good advice in the past and they might
have an intrinsic motivation to give good advice and/or value long-lasting relationships
a lot. Another explanation could be reciprocity: Advisers reward consumers for their
loyalty over the last rounds by giving better advice.

Overall, we conclude that the difference in advice quality between control group and

treatment group seems to be quite robust.

C.2. Welfare Analysis
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Figure 8: Robustness Checks for Consumer Welfare

The results of the robustness checks for consumer welfare can be seen in Figure
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8. Overall, the observation that consumer welfare does not significantly differ between
control and treatment group is very robust. When we take out the supergames with
less than three rounds (Figure 8a) or the first two supergames of each session (Figure
8c) or those consumers with two or more incorrect answers to check questions (Figure
8b), there is no significant difference in consumer welfare between control and treatment
group. We also had a look at total welfare, the sum of consumer and expert payoffs. As
can be seen in Figure 8d, there is no significant difference between control and treatment
group, either. This also implies that expert payoffs in control and treatment group are

not significantly different from each other.

C.3. Hazard Rates
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Figure 9: Robustness Checks for Hazard Rates

Figure 9 shows the robustness checks we performed for the hazard rates. Our finding
that hazard rates are significantly lower in learning levels py and p; proves to be robust.
Both excluding consumers with two or more incorrect answers to check questions (Figure
9a) and taking out the first two supergames of each session (Figure 9b) leads to a shape

very similar to the one in Figure 4.
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