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Abstract

A consumer repeatedly asks an expert for advice. The expert’s incentives

are not aligned with the consumer’s preferences because he can receive a bonus

if the consumer takes certain actions. Over time, the expert gets to know the

consumer and is therefore able to give better advice (if he wants to do so). In

simple equilibria, both – consumer and expert – benefit from the expert’s learning

if “learning” is such that the expert’s best guess about what is the best advice

for the consumer becomes more precise. This provides a natural explanation for

why consumers have a preference for personalized advice and also for why most

internet users do not use anonymization tools. The theoretical predictions are

tested in a laboratory experiment.

JEL codes: C73, C91, D82, D83

Keywords: Advice, Cheap Talk, Privacy

1. Introduction

In many situations, consumers ask better-informed experts to guide their choices. This

happens even in situations where experts may have preferences over consumer choices

that do not match the consumers’ preferences, and it happens even in situations where it

is difficult for the consumer to accurately articulate his exact preferences. For example,

a consumer might ask his bank’s employees for financial advice. The bank employee
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typically receives a bonus if the consumer purchases a particular investment product and

often different investment products result in different bonuses for the adviser. There is

no reason to believe that the product with the highest bonus is also the one best suited

for the consumer. Similar situations occur in other retail sectors, such as consumer

electronics or even cars.

Another example is internet search. A consumer enters a search term and relies

on the search engine’s response. Since some links are sponsored, there is an incentive

for the search engine to emphasize the sponsored links more than links that better fit

the consumer’s needs but are not sponsored. A third example would be a minister

(or manager) asking a civil servant (subordinate) to draft a particular legislative act

or decree. Even if the civil servant has no policy preferences of his own, he might be

aware that a similar draft has already been written under a previous government and

that handing that old draft to the minister would save him a lot of time and effort.

Again, this old draft is unlikely to do exactly what the minister wanted to accomplish.

As a final example, consider a physician-patient relationship. The patient describes his

symptoms and the physician prescribes a medication. Given the lobbying efforts of the

pharmaceutical companies, it is quite possible that the physician has a preference for a

certain drug company or pharmaceutical product.

What do these examples have in common? A consumer asks an expert to help him

make a choice, although he cannot be sure what the expert’s preferences are. In none of

the examples is there a direct payment from the consumer to the expert, which means

that the consumer has little ability to provide the expert with the right incentives. Fur-

thermore, the consumer’s communication of his preferences is complicated (due to the

complicated nature of the issue and the consumer’s ignorance that leads him to seek

advice in the first place) and the expert’s task is difficult. In other words, even if the

expert tried to help the consumer as well as he can, there would be some likelihood of

misunderstanding and error. In a static one-shot game, we should not expect useful

advice in any of these situations: By the one-shot nature, an expert would optimally

recommend the alternative that earns him the (highest) bonus, since the consumer has

no way to punish this behavior. Knowing this, the consumer would then not even

ask for advice as the recommendation would not be consistent with his preferences.

However, the above examples do not usually resemble a one-shot game. Consumers

repeatedly consult the same financial adviser, use the same search engine, work with

the same subordinates or visit the same physician. Repeated interaction – one could

call it “relationship building” – has two interesting features: First, it is well known in

game theory that cooperative behavior can be sustained in repeated interactions, even

if this behavior cannot be sustained in a static one-shot game. Therefore, meaningful

advice might be possible because of the repeated nature of the advice situation. Sec-
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ond, the adviser could learn to interpret the consumer’s wishes. That is, the adviser’s

ability to give fitting recommendations is likely to improve over time. This is because

both the adviser and the consumer can observe how previous recommendations have

played out, such as whether the consumer was satisfied with the product purchased

(or tried to return it), whether the consumer clicked on the recommended link (and

stayed on the website or subsequently purchased something there), whether the draft

was pushed forward or discarded or whether the patient was cured. The success or

failure of the recommendation can be used to learn how to interpret future requests

from the consumer.

It should be noted that the learning we have in mind is relationship-specific. In

particular, prior learning would be of little use to the consumer if he decides to switch

experts. Although the consumer might also learn how to express his wishes to some

extent, most of the learning seems to be on the expert’s side. This paper therefore

focuses on a setting where only the expert learns, and attempts to answer several

questions. The most basic question is whether an equilibrium with meaningful advice is

possible. The answer, unsurprisingly, is yes. The expert will give partially useful advice

in equilibrium because the consumer threatens to end the relationship (and therefore

the expert’s opportunity to collect bonuses) if he receives bad advice for a number

of periods. The key question is whether the consumer will benefit from the expert’s

learning. This is unclear because the consumer’s outside option is not affected by the

expert’s learning, i.e. the expert could counteract his improved ability to give the right

recommendation by recommending the product for which he receives a bonus more

often. It is shown that – under certain conditions – the consumer in a certain class

of simple equilibria nevertheless benefits. The reason for this is a value effect. The

more the expert learns about the consumer, the more valuable the consumer is to the

expert in the sense that the expected discounted bonus stream from that consumer is

higher. The reason is that bad advice due to misunderstandings, i.e. the expert trying

to give fitting advice but failing due to misunderstanding the consumer’s request, can

be avoided. Given the higher value, the expert will lose more if the consumer ends

the relationship and is therefore generally more inclined to give good advice to avoid

exactly that. This leads to a testable prediction: The probability that a relationship

will end now given that it has not already ended is lower the longer the relationship

lasts.1

The result that consumers benefit from expert learning provides a natural expla-

nation for a puzzle that has emerged in the literature on privacy. People do not take

even simple measures to anonymize their online activities. For example, most users

1More precisely, the probability that the relationship will end this period is lower than it was m
periods ago, where m ∈ N is a number defined by the consumer’s equilibrium strategy.
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use a search engine like Google directly, rather than using an anonymized service that

redirects their search queries through another server before forwarding them to Google

(and thus anonymizing them).2 Privacy advocates emphasize that the more information

the search engine has about a user, the greater the potential for exploitation (a simple

exploitation method would be to display more sponsored links). The model shows that

this is not the only effect. Due to the value effect, consumers also benefit from the

search engine’s learning. Staying anonymous can lead to lower consumer surplus in the

model of this paper. This also explains why consumers might prefer to get advice from

the same person, such as having the same financial adviser at their bank whenever they

go there, or staying with the same physician instead of switching every time they fall

ill.

The rest of this paper is organized as follows: Section 2 discusses related literature.

Section 3 presents the model and the equilibrium analysis is performed in Section 4.

Section 5 deals with welfare and anonymization. Most proofs of our theoretical results

can be found in Appendix A. To compare our theoretical findings with real-world

behavior, we conducted a laboratory experiment. The key results from this experiment

are reported in Section 6. Section 7 discusses the results of this paper, Section 8

concludes.

2. Related literature

The consumer-expert relationship we study can be reinterpreted as a relationship be-

tween a principal and a noisily informed agent. In this sense, our work is naturally

related to the cheap talk literature started by Crawford and Sobel (1982) and surveyed

in Sobel (2013) and Blume et al. (2020). The fact that repeated interaction can be

beneficial despite the lack of commitment is reminiscent of the literature on relational

contracting started by Bengt Holmstrom (Holmström, 1978, 1982). There are two no-

table differences. First, most of the cheap talk literature is either static or deals with

reputation concerns (Sobel, 1985; Benabou and Laroque, 1992; Park, 2005). Reputation

issues are not addressed in the context of this paper but are addressed in Schottmüller

(2019), where a similar model is used, which, however, does not allow for learning by the

expert. Second, and more importantly, the cheap talk literature deals with a different

misalignment of preferences. Typically, there is a one-dimensional decision and the ex-

pert is biased in one direction, e.g. he prefers slightly higher decisions than the decision

maker. The structure here is different because the expert simply has a preferred option

that is independent of the consumer’s optimal option. One implication of this structure

is that no meaningful advice is possible in a static setting, whereas this is obviously not

2There are many easy-to-use services of this type, such as https://www.startpage.com or https:
//www.privatesearch.io.
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the case in the cheap talk literature.

Li et al. (2017) analyze a repeated games setting in which the expert’s and the

principal’s preferred projects are always distinct but the principal’s project does not

always exist. Moreover, there is always a default option that yields zero for all, and a

disastrous project that yields −∞ for all. Only the expert observes the identity of the

projects, can communicate them and they are implemented if both expert and principal

put effort into the same project. Our paper differs in two ways: First, both the expert’s

and the consumer’s preferred option always exist and they can be equal. Second, the

expert is not perfectly informed about the consumer’s preferred option, but he receives

a signal whose quality may increase over time.

The setting in Lipnowski and Ramos (2020) is probably closest to ours, since there

the principal decides in each period whether to freeze the projects or delegate the project

decision to the expert. The expert observes the quality of the project (high or low) and

then decides whether to implement it or nothing, but the principal never learns the

quality of the project. They study an intertemporal delegation rule to create incentives

for the agent/expert and find that the agent represents the principal’s interests only

if dynamic incentives are provided. Our setting differs as (i) the agent has only noisy

information and (ii) the principal does not “pause” the expert but fires him when he is

dissatisfied with his advice. Furthermore, we focus on welfare dynamics in a class of

simple equilibria.

Another related strand of literature is that on consumer protection in financial advice

(Inderst and Ottaviani, 2012a,b, 2009). In these papers, the financial adviser is not only

concerned with getting his bonus but also with the suitability of his advice. They focus

on policy interventions that provide the adviser with the right incentives or payment

schemes depending on whether consumers know the adviser is biased or not. In our

framework, the expert is exclusively paid by his bonus and only cares indirectly about

the suitability of his advice as the consumer threatens to leave him after receiving bad

advice. Moreover, we model the improvement of the signal technology over time, while

Inderst and Ottaviani mostly assume an exogenous and static signal.

An important application of our paper is search engines. Previous work on this

market has focused mainly on ad pricing and auctioning (Edelman et al., 2007; Edelman

and Schwarz, 2010; Eliaz and Spiegler, 2011) while we focus on the strategic interaction

of search engine and user. More closely related is the literature on privacy in the context

of search engines. Computer science has provided ways to enable fully anonymous search

through encryption even when the provider has no commitment power, see Byers et al.

(2004) and Çetin et al. (2016). However, results on the benefits of personalization in

internet search are ambiguous. On the one hand, already Spiekermann et al. (2001)

argue that people value privacy protection but are not able to take the necessary means
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to meet this privacy protection goal. In the same vein, Acquisti et al. (2015) have

demonstrated that people are unsure how to protect their data and what parts of their

data are used for what purpose. They conclude that privacy protection should be

regulated because näıve people will be harmed otherwise. We add to this literature by

showing that even in the absence of näıveté it is unclear whether a user should allow

personalization or not. In fact, users benefit from personalization in a certain class of

simple equilibria. Experimental evidence shows that users value privacy to some extent

(Tsai et al., 2011; Chellappa and Sin, 2005) and that sellers can benefit more than

buyers from personalization (Hillenbrand and Hippel, 2019). On the other hand, some

authors have shown that providing some personal data can benefit consumers, see Xu

et al. (2007); Zimmer (2008).

3. Model

The model is a dynamic game with infinite time horizon. In each period, there are two

options, one of which the consumer (C) must choose. One of the two options fits C’s

needs and therefore gives him a payoff of 1 while the other option gives him a payoff of

0. C’s prior is that both options are equally likely to give him a payoff of 1.

The expert (E) receives a private and noisy signal about which option fits C’s needs.

More precisely, E’s signal leads to a posterior in which one option has probability

pk > 1/2 to fit C’s needs and the other option has probability 1 − pk < 1/2 to fit C’s

needs. Without loss of generality we call the option that is more likely to fit C’s needs

option 1. The precision of E’s signal, pk, is an element of a finite set P = {p1, p2, . . . , pn}
with 1/2 < p1 < p2 < · · · < pn < 1. As E learns about C’s needs over time, precision

improves in the following way: Whenever E recommends the option fitting C’s needs,

precision improves from pk to pk+1 (unless pk = pn in which case precision remains

unchanged).3

The expert’s payoffs are as follows: In every period, E has a bonus option. That is,

E receives a bonus of 1 if he recommends this option to C while he receives a payoff of

0 otherwise. Each option has ex ante the same probability of being the bonus option

and the identity of the bonus option is private information of E.4

The timing is as follows. In each period, E privately observes his signal and the

identity of his bonus option. Then E recommends an option to C. C follows this recom-

mendation and period payoffs realize. Both players observe whether the recommenda-

3The finiteness of P simplifies the exposition, but does not affect the results. As pi cannot increase
above 1, learning must eventually flatten out in the sense that precision has to converge to an upper
bound as i becomes large. Finiteness of P relieves us of the notationally burdensome task of taking
limits in certain proofs and allows us to use backward induction right away.

4Note that more options for the expert would only make the analysis more tedious without really
adding anything to the model, since the expert will only decide between his bonus option and the
option he considers most likely to be the fitting option for the consumer.
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tion fits C’s needs or not. Then, C decides whether to end or continue the game. If C

ends the game, C receives an outside option VO in the following period while E receives

no payoffs in all future periods. If C continues, another period of the same game begins.

Both players discount future payoffs with discount factor δ ∈ (0, 1). Needs and bonus

option are assumed to be independent of each other and across periods.

In what follows, the word hit (miss) is used to denote the event that the recommen-

dation fits (does not fit) the consumer’s needs in a given period.

To make the problem interesting, C’s outside option should be neither too attractive

nor too unattractive. For example, VO should be lower than the value the consumer

would receive if he had a signal of precision pn. If this was not satisfied, C would have

the dominant strategy to end the relationship immediately. The outside option should

also not be too low. More precisely, we assume that VO is higher than the value C gets

when E recommends his bonus option in each period. If this did not hold, there would

be a unique perfect Bayesian equilibrium in which C always continues and E always

recommends his bonus option. These two conditions are stated as

1/2

1− δ
< VO <

pn

1− δ
. (1)

Before turning to the players’ strategies, let us discuss some modeling choices. We

assume that the recommendation itself is payoff-relevant, i.e. E receives his bonus if

he recommends the bonus option and C receives his payoff if the recommendation fits

his needs. Put differently, there is no real decision by C whether or not to follow the

recommendation. This is not unreasonable because C has uniform beliefs and therefore

cannot draw any inference from the recommendation itself about the likelihood that

the recommendation fits his needs. Given that C has continued in the previous period

and thereby asked for more advice, it seems logical to follow that advice. That is, there

is no reason in the model to first ask for advice and then not follow it. It is also in

line with certain applications, e.g. a consumer using a search engine will typically not

refuse to click on a recommended link and most patients, as long as they can afford

it, will take the prescribed medication. It is assumed that at the end of a period

both C and E observe whether the given recommendation fitted the consumer’s needs.

In the examples mentioned earlier, this last assumption is reasonable: A salesperson

will observe whether the consumer tries to return the product, the civil servant will

observe whether his draft is pushed forward and the doctor will find out whether the

patient recovers. In the search engine example, the search engine observes whether the

link was clicked and – in the case of Google – to the extent that the target website

uses GoogleAnalytics, csi.gstatic, GoogleAdSense or a GooglePlus button, Google also

receives information about the user’s subsequent behavior on the target website.
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Note that the model assumes independence at several points. First, the bonus option

is independent of the consumer’s needs. This is one of the main differences to the cheap

talk literature and appears naturally in the examples of the introduction. Second, there

is some temporal independence in the sense that the consumer’s needs and the bonus

options are drawn independently in each period. One way to interpret this is that the

requests of the consumer are unrelated, e.g. searching for an Italian restaurant in one

period and for news in another period in the search engine example or suffering from

different diseases in the patient-doctor example. In the financial advice example, the

market environment and the set of available products may change from period to period.

As argued before, E gets to know the consumer better, so the precision of E’s signal

should increase over time. Depending on the application, the precision might increase

either after each interaction or after each hit or not at all. It seems realistic that a

fitting recommendation tells more about a consumer’s preferences than a non-fitting

one. The assumption made here is that the precision increases with the number of past

hits and that this increase is deterministic and commonly known by C and E. That is,

no learning happens after misses. The special case of no learning at all will be analyzed

later as a starting point.

It is worth noting that no meaningful advice would be possible if the game was not

infinitely repeated. Let us consider the static case. E has no incentive to recommend

anything other than his bonus option. C therefore receives no information about which

option is more likely to fit his needs. A similar situation emerges in a finitely repeated

game. The static analysis applies to the last period. Since there is no meaningful

communication in the last period, C should end the game after the penultimate period

(regardless of history). Anticipating this, E will optimally recommend his bonus option

in the penultimate period, regardless of what his signal is. Iterating this reasoning the

game unravels and no meaningful advice is possible in any period. In the infinitely

repeated game, the situation changes because future bonuses may motivate E to give

truthful advice even if his bonus option is option 2. As there is no last period, there is

no period in which these dynamic incentives break down.

What are the strategies of the players in this game? We assume that the players

base their decision only on observed, payoff-relevant information. That is, C’s decision

depends only on the sequence of hits and misses in the previous periods.5 E has to

decide in each period which option to recommend. His decision depends on his posterior

belief, his bonus action and the history of hits and misses. In principle, his decision

could also depend on the history of bonus options, but this possibility is neglected

because his current and future payoffs do not depend on this information (neither

5In principle, C observes the specific recommendations but since the option labels are not observed
by him, he is unable to condition his strategy on these labels.
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directly nor indirectly as C’s strategy cannot condition on this information, which C

has not observed).

In the following, we employ two commonly used equilibrium notions and compare

their outcomes. Both put further restrictions on strategies. First is the Markov equi-

librium, where strategies condition only on the actions and information of the current

period and a payoff-relevant state variable. The state variable is the current precision

pk. Consequently, E’s strategy is a function sE : P ×{1, 2} → [0, 1] that assigns a prob-

ability of recommending option 1 to every pk ∈ P and the identity of the bonus option.

C’s strategy is a function sC : P × {hit,miss} → [0, 1] that assigns a probability of

continuing the game to every pk ∈ P and the success of this period’s recommendation.

The second notion of equilibrium is (an extension of) grim trigger. C continues as

long as the recommendations are hits. He ends the game if m consecutive recommen-

dations are misses for some m ∈ N. E plays a best response to this strategy. Of course,

it remains to be shown that C’s grim trigger strategy is a best response to E’s best

response, but this turns out to be straightforward unless VO is too high.

4. Analysis

In the following, we study two classes of simple equilibria and demonstrate the welfare

implications. In Markov equilibria, consumers do not benefit from learning. The logic

is that the consumer’s outside option does not improve when the expert learns and

consequently the expert will not be willing to leave him a higher surplus. In a grim

trigger equilibrium, we show that the consumer does benefit from the expert’s learning.

However, if we extend the grim trigger concept such that the consumer does not quit

after the first bad advice but after, say, two consecutive bad advice, the consumer may

even lose out (for some parameter values) due to the expert’s learning.

4.1. Markov equilibrium

Note first that there is always a babbling Markov equilibrium. In this equilibrium, E will

always recommend his bonus option and C will always stop the game. Clearly, these

are mutually best responses given assumption (1). Therefore, the interesting question is

not whether a Markov equilibrium exists but whether a Markov equilibrium with some

information transmission exists. Before answering this question in general, it is useful

to analyze the case without learning where the precision of E’s signal remains constant.

If C does not stop the game beforehand, this situation occurs after n − 1 hits in our

model when E’s signal has precision pn.
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4.1.1. Model without learning

Without learning, the state never changes and therefore a Markov strategy will only

condition on this period’s information/actions. That is, a strategy for E consists of two

probabilities of recommending option 1 if (i) it is the bonus option and (ii) it is not.

Similarly, a strategy of C consists of two probabilities of continuing: one in case of a

hit and one in case of a miss.

In equilibrium, the probability of continuing is (weakly) higher in case of a hit than

in case of a miss. Otherwise, E would have an incentive to give worst possible advice,

i.e. to always recommend option 2 if it is the bonus option (and possibly even if it is

not) which, according to (1), automatically implies that C is better off ending the game.

Since the probability of continuing the game is higher in case of a hit than in case

of a miss, it is optimal for E to recommend option 1 if option 1 is the bonus option. In

this case the incentives of C and E are aligned. E’s strategy can therefore be reduced

to a probability α of recommending option 1 when option 2 is the bonus option.

While other equilibria can exist, we will focus on the case where C continues with

probability 1 in case of a hit. Note that this provides the greatest incentive for E to

be truthful. The restriction is not problematic: It is not hard to show that whenever

a non-babbling Markov equilibrium exists, there exists a Markov equilibrium in which

C continues with probability 1 in case of a hit. Furthermore, this is the equilibrium

that Pareto dominates all other Markov equilibria. Under this constraint, C’s strategy

is simply a probability β of continuing in case the recommendation is a miss.

Denote E’s equilibrium value, i.e. his discounted expected payoff stream at the start

of a period (even before knowing the identity of the bonus option), by Π. If option 2 is

the bonus option, E prefers recommending option 1 if

pδΠ + (1− p)βδΠ ≥ 1 + pβδΠ + (1− p)δΠ

⇔ β ≤ (2p− 1)δΠ− 1

(2p− 1)δΠ
. (2)

Denote C’s equilibrium value by V and note that C is willing to continue only if

V ≥ VO. Since this is independent of whether the current period’s recommendation

was a hit or a miss and since C continues for sure after a hit, C must either continue

with probability 1 even after a miss, β = 1, or C must be indifferent, V = VO. The

former cannot happen in equilibrium: (2) cannot hold for β = 1 and E would therefore

always recommend his bonus option. However, by (1), C would then strictly prefer not
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to continue. Therefore, V = VO in equilibrium and consequently α has to be such that6

VO =
1

2
p+

1

2
(αp+ (1− α)(1− p)) + δVO

⇔ α =
2(1− δ)VO − 1

2p− 1
. (3)

By (1), α ∈ (0, 1). Hence, in an informative Markov equilibrium, E uses a mixed strategy

and E is only willing to mix if (2) holds with equality. Given these equilibrium strategies

one can determine the equilibrium values and obtain conditions for the existence of a

non-babbling Markov equilibrium.

Proposition 1. A non-babbling Markov equilibrium in the model without learning exists

if and only if
1− δ
δ
≤ 4p− 3

2
. (4)

In such an equilibrium V = VO and Π > 0 and in the Pareto optimal Markov equilibrium

α is given by (3) and β = 1− 1/[(2p− 1)δΠ].

Note that condition (4) is more likely to be satisfied the higher p and δ are. Moreover,

it implies p ≥ 0.75, so the signal quality has to be quite high in order to guarantee the

existence of a Markov equilibrium. Intuitively, this makes sense since the expert has

to be incentivized to recommend option 1 in some cases even when it is not his bonus

option. This will happen when the expert is more patient (high δ) or is reasonably sure

to produce a hit (high p) in this case, such that the next period will be reached with

higher probability.

4.1.2. Model with learning

Also in the model with learning, it is straightforward to see that E will always rec-

ommend option 1 when option 1 is the bonus option. As before, we will focus on

non-babbling Markov equilibria in which C continues for sure in case of a hit. Strate-

gies are therefore given by sets of probabilities {αk}k∈{1,...,n} and {βk}k∈{1,...,n}. The

players’ values, i.e. their expected discounted payoff streams at the start of a period

with precision pk, are denoted by Πk and V k. It follows from the previous subsection

that such an equilibrium can only exist if (4) holds (for p = pn). This condition is

necessary but not sufficient for the existence of a non-babbling Markov equilibrium and

is therefore generalized below.

The first step is to show that in no period E will recommend option 1 regardless

of the identity of the bonus option while C continues regardless of whether the rec-

ommendation is a hit or a miss. While this property is not surprising, it is also not

6As C is indifferent, we can determine his value V = VO by writing down the expected payoff stream
if he continued for sure this period.
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straightforward: After all, recommending option 1 gives E a higher chance to move to

the next highest precision and in principle it would be possible for this to motivate him

to be truthful (if Πk+1 is sufficiently larger than Πk).

Lemma 1. In Markov equilibrium αk = βk = 1 cannot hold for any k because E’s best

response to βk = 1 is αk = 0.

Lemma 2. In every Markov equilibrium V k = VO for all k ∈ {1, 2, . . . , n}.

Lemma 2 implies E’s strategy in Markov equilibrium. If the game reaches precision

pk with positive probability in a Markov equilibrium, then E has to mix such that C is

indifferent between continuing and stopping. That is,

VO =
1

2
pk +

1

2

(
αkpk + (1− αk)(1− pk)

)
+ δVO

⇔ αk =
2(1− δ)VO − 1

2pk − 1
. (5)

Note that αk, as given by (5), is in (0, 1) by assumption (1). Consequently, E must be

indifferent between recommending either option if the bonus option is option 2. This

indifference condition determines βk:

1 + pkβkδΠk + (1− pk)δΠk+1 = 0 + pkδΠk+1 + (1− pk)βkδΠk

⇔ βk =
(2pk − 1)δΠk+1 − 1

(2pk − 1)δΠk
. (6)

Note that Πn is given by the stationary equilibrium value derived in the proof of Propo-

sition 1. From this, Πn−1 and βn−1 can be obtained and by backward induction all

other βk and Πk can also be obtained. A non-babbling Markov equilibrium exists if all

such obtained βk are in [0, 1]. The following proposition gives a necessary and sufficient

condition for exactly this.

Proposition 2. A non-babbling Markov equilibrium in the model with learning exists if

and only if

δn−2

1− δ
4pn − 3

4pn − 2
+

n−3∑
k=0

δk
4pk+2 − 3

4pk+2 − 2
≥ 1

δ(2p1 − 1)
. (7)

In this Markov equilibrium, V k = VO and

Πk =
δn−k

1− δ
4pn − 3

4pn − 2
+

n−k−1∑
j=0

δj
4pj+k − 3

4pj+k − 2
(8)

for k ∈ {1, 2, . . . , n}, and αk and βk are given by (5) and (6), respectively.
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4.2. Simple grim trigger strategies and m-equilibrium

Like most repeated games, the game described here has multiple perfect Bayesian Nash

equilibria. We will now focus on a class of equilibria in which C employs the following

particularly simple strategy: C continues the relationship unless the past m ≥ 1 recom-

mendations were misses. After m consecutive misses, C stops the game and consumes

his outside option. Since this strategy is somewhat similar to the grim trigger strate-

gies taught in introductory game theory, we will call this strategy a simple grim trigger

strategy of length m or m-strategy for short. A perfect Bayesian Nash equilibrium in

which C uses an m-strategy is called m-equilibrium.

When can an m-strategy be optimal for C? First, C must have a continuation value

of at least VO after any history that contains fewer than m consecutive misses. Second,

continuing after m misses must result in a continuation value of at most VO. The latter

can be easily achieved: According to (1), it is optimal to end the game if E recommends

his bonus option in all subsequent periods. In an m-equilibrium, continuing after m or

more misses is clearly off the equilibrium path. Hence, the following off path beliefs of

E will make this response optimal: If C has continued after m misses before, then E

believes that C will end the game in the next period regardless of whether there is a

miss or hit in the current period. Given this belief, it is clearly optimal to recommend

the bonus option now. This implies that it is indeed optimal for C to end the game

after m (or more) misses. These off path beliefs are not ruled out by perfect Bayesian

Nash equilibrium or normal refinements.

Based on this off path construction, the following steps suffice to construct an m-

equilibrium. First, derive E’s best response to C’s m-strategy. Second, verify that C’s

continuation value on the equilibrium path is at least VO. This implies that C’s strategy

is optimal as ending the game earlier always yields only VO.

What is E’s best response to an m-strategy? In a given period, E is always tempted

to recommend the bonus option in order to secure a payoff of 1. The downside of this

choice is that a miss is quite likely if the posterior belief that the bonus action fits C’s

needs is low. An additional miss brings E closer to the end of the relationship, stopping

the bonus stream forever and therefore leading to a payoff of zero for E. It is immediate

that E will always recommend option 1 if option 1 is the bonus option.

We denote the value of the expected discounted bonus stream after t consecutive

misses, when the signal strength is pk, by Πk
t . After t − 1 consecutive misses, it is

optimal for E to recommend option 1 instead of the bonus option (in case the two are

not identical) if the following relation (9) holds.

pkδΠk
t + (1− pk)δΠk+1

0 + 1 ≤ pkδΠk+1
0 + (1− pk)δΠk

t (9)

⇔ 1

δ(2pk − 1)
≤ Πk+1

0 − Πk
t

13



Note that in an m-equilibrium Πk
m = 0. Consequently, E – for a given k – is most

inclined to give good advice after m − 1 misses. The following lemma verifies a more

general result: Πk
t is decreasing in the number of misses t which implies that E becomes

more eager to give good advice as the number of misses increases. Furthermore, E

benefits from learning in the sense that Πk
0 is increasing in k.

Lemma 3. In every m-equilibrium, Πk
0 is increasing in k and Πk

t is decreasing in t.

Lemma 3 has a direct implication for E’s strategy in an m-equilibrium: As Πk
t is

decreasing in t, (9) is more likely to be satisfied for higher t (fixing k). Thus, for a

given precision pk, E will recommend the bonus option if t is low and option 1 if t is

sufficiently high (in case the two do not coincide). This result is stated as a corollary

for further reference.

Corollary 1. In every m-equilibrium, E uses a precision dependent cutoff strategy. That

is, E recommends the bonus option if the number of consecutive misses t with signal

strength pk is strictly below some threshold lk ∈ {0, 1, . . . ,m} and recommends option 1

otherwise.

Note that both the case lk = 0, corresponding to E always recommending option

1, and the case lk = m, corresponding to always recommending the bonus option, are

allowed. For t ≥ lk, E’s value can be written as Πk
t = 1/2 + pkδΠk+1

0 +
(
1− pk

)
δΠk

t+1.

Keeping in mind that Πk
m = 0 in an m-equilibrium, backward induction gives for t ∈

{lk, . . . ,m− 1}

Πk
t =

m−t−1∑
j=0

δj
(

1

2
(1− pk)j + pk(1− pk)jδΠk+1

0

)
. (10)

For t < lk, E’s value is Πk
t = 1 + δΠk+1

0 /2 + δΠk
t+1/2. Using the expression for t ≥ lk

above, iterating backwards yields for t < lk

Πk
t =

lk−t−1∑
j=0

δj

((
1

2

)j
+

(
1

2

)j+1

δΠk+1
0

)
+
m−lk−1∑
j=0

(
δ

2

)lk−t
δj
(

1

2
(1− pk)j + pk(1− pk)jδΠk+1

0

)
.

(11)

Using relation (10), we can derive the exact value of the threshold lk:
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Lemma 4. The threshold lk chosen by E in an m-equilibrium is given by

lk =



0, if 1
2

+ pkδΠk+1
0 ≤ (1− δ(1− pk))(Πk+1

0 − 1
(2pk−1)δ

)

m, if Πk+1
0 < 1

(2pk−1)δ

max

0,

m− 1−
ln

1−(1−δ(1−pk))
Πk+1

0 − 1
(2pk−1)δ

1
2 +pkδΠk+1

0


ln(δ(1−pk))


 , else.

(12)

Note that Lemma 4 also implies that m > lk always holds in the third case, since the

logarithm in the numerator is negative (the negations of the first two conditions ensure

that the term inside the logarithm is between 0 and 1). This justifies the following

Remark 1. If lk = m for some k in an m-equilibrium, then also li = m for all i ∈
{1, . . . , k − 1}. This follows directly from Lemma 4 as Πk+1

0 is increasing in k and
1

(2pk−1)δ
is decreasing in k.

It is useful to first analyze the case without (further) learning which occurs after

n− 1 hits.

4.2.1. Model without learning

For k ≥ n, Πk
0 = Πn

0 since there is no more additional learning. This implies that in an

m-equilibrium, Πn
0 has to solve (11) with the same Πn

0 on both sides of the equation.

Furthermore, ln in this equation has to be optimal in the sense of (9). The following

lemma implies that there exist unique Πn
0 and ln satisfying these optimality conditions.7

Lemma 5. E has a unique best response to C’s m-strategy in the model without learning.

Whether an m-equilibrium exists depends on C’s outside option. If E’s best response

to C’s m-strategy, as derived in the proof of Lemma 5, leaves C with a sufficiently high

value after 0 misses, then an m-equilibrium exists.

Proposition 3. An m-equilibrium in the model without learning does not exist if

2pn − 1 <
1− δ + (δ/2)m+1

δ(1− (δ/2)m)
. (13)

If (13) does not hold, an m-equilibrium exists if and only if VO ≤ V̄O for some V̄O

satisfying (1).8

7For uniqueness, we require the tie-breaking rule that E recommends option 1 if he is indifferent.
Without this tie-breaking uniqueness is (only) generic.

8Note that for m = 1, the condition (13) reduces to 2pn−1 <
1− δ

2

δ ⇔ pn < 3
4 + 1−δ

2δ . This is exactly
the existence condition (4) for a Markov equilibrium without learning.
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4.2.2. Model with learning

We start by deducing explicit formulas for the continuation value V k
t of the consumer

after t consecutive misses and with precision k. As V k
m = VO in an m-equilibrium, the

value for t ∈ {lk, . . . ,m− 1} can be derived by backward induction. We obtain

V k
t =

m−t−1∑
j=0

(1− pk)jδjpk(1 + δV k+1
0 ) + (1− pk)m−tδm−tVO. (14)

Using this, we can also derive the value of V k
t for t < lk. It is given by

V k
t =

lk−t−1∑
j=0

(
δ

2

)j
1

2
(1 + δV k+1

0 )

+

(
δ

2

)lk−tm−lk−1∑
j=0

(1− pk)jδjpk(1 + δV k+1
0 ) + (1− pk)m−lkδm−lkVO

 . (15)

Before we compute the expert’s expected value Π0 at the start of the game, we

introduce some notation. In an advice relationship between a consumer and an expert,

let w = (w1, . . . , wn−1) denote the vector of waiting times until the first, second, . . . , (n−
1)−th hit, where wi denotes the number of periods in learning level i (with precision pi)

until the i−th hit occured. In an m-equilibrium, wi > m implies that the consumer will

fire the expert as he produced at least m consecutive misses. Hence, there are two types

of possible histories in an advice relationship: First, those where the expert produced

at least n − 1 hits and reached the last precision level pn. Second, those where the

expert produced at least m consecutive misses before pn was reached. We denote these

two sets of histories by

Wn = {w = (w1, . . . , wn−1) ∈ Nn−1|1 ≤ wi ≤ m ∀i ∈ {1, . . . , n− 1}} and

Wf = {w = (w1, . . . , wj∗) ∈ Nj∗for some 1 ≤ j∗ ≤ n− 1|wj∗ = m+ 1, 1 ≤ wi ≤ m ∀i < j∗}.

The set of all feasible histories in an m-equilibrium is then given byW =Wn∪Wf . For

any w ∈ Wf , let us denote by len(w) the dimension of the vector w. This value always

corresponds to the learning level in which the expert gets fired because he produces m

consecutive misses. We can now derive Π0.

Proposition 4. In an m-equilibrium, let (lk)k=1,...,n denote the vector of switching strate-

gies for the expert, depending on the precision level. The expected value Π0 of the expert
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at the beginning of the game is given by the formula

Π0 =
∑
w̄∈W

P(w = w̄)E(Π0|w = w̄),

where P(w = w̄) =


∏n−1

i=1

(
1{w̄i≤li}(

1
2
)w̄i + 1{w̄i>li}(

1
2
)l
i
(1− pi)w̄i−li−1pi

)
, if w̄ ∈ Wn

(1
2
)l
len(w̄)

(1− plen(w̄))m−l
len(w̄)∗∏len(w̄)−1

i=1

(
1{w̄i≤li}(

1
2
)w̄i + 1{w̄i>li}(

1
2
)l
i
(1− pi)w̄i−li−1pi

)
, if w̄ ∈ Wf

and E(Π0|w = w̄) =



∑n−1
k=1

(
1{w̄k≤lk}

∑w̄k−1
h=0 δh + 1{w̄k>lk}

(∑lk−1
h=0 δ

h + 1
2

∑w̄k−1
h=lk δ

h
))

δ
∑k−1
j=1 w̄j

+δ
∑n−1
j=1 w̄j

∑ln−1
g=0 ( δ

2
)g+

∑m−1
g=ln δ

g( 1
2

)g−l
n

1−
∑ln−1
g=0 ( δ

2
)g+1−

∑m−1
g=ln ( 1

2
)lnδg(1−pn)g−lnpn

, if w̄ ∈ Wn∑len(w̄)−1
k=1

(
1{w̄k≤lk}

∑w̄k−1
h=0 δh + 1{w̄k>lk}

(∑lk−1
h=0 δ

h + 1
2

∑w̄k−1
h=lk δ

h
))

δ
∑k−1
j=1 w̄j

+δ
∑len(w̄)−1
j=1 w̄j

(∑llen(w̄)−1
h=0 δh + 1

2

∑m−1
h=llen(w̄) δh

)
, if w̄ ∈ Wf .

The following result deals with the hazard rate, i.e. the probability that the expert is

fired in a given learning level, conditional on having reached that level. More concretely,

we denote by HR(k) the probability of having m consecutive misses in an m-equilibrium

after reaching precision level k. For the last precision level k = n, HR(n) denotes the

probability of being fired in this level without having scored a hit before (since the game

is infinitely repeated, the probability of being fired in the last precision level is 1).

Proposition 5. If pk+1 ≥ 1−(1−pk)m2m−1 holds for all k in {1, . . . , n−1}, then HR(k)

is decreasing in k in an m-equilibrium.

Example 1. To illustrate the above proposition, let us consider an m = 2 equilibrium

with an initial precision of p1 = 0.51. The subsequent precision levels that guarantee

a decreasing hazard rate are given by p2 = 0.5198, p3 ≈ 0.5388, p4 ≈ 0.5746, p5 ≈
0.6381, p6 ≈ 0.7380, p7 ≈ 0.8627, p8 ≈ 0.9623, p9 ≈ 0.9972.

Example 2. Figure 1 shows the precision levels that ensure a decreasing hazard rate

according to Proposition 5 for m = 2,m = 3 and m = 4.

5. Welfare dynamics and anonymization

In this section, we discuss the dynamics of consumer surplus. Since the consumer’s value

equals his outside option regardless of the precision level in Markov equilibrium, the

consumer does not benefit from learning in a Markov equilibrium. This is consistent

with the argument that the expert can pocket all the benefit since the consumer’s

outside option (and therefore bargaining position) does not improve as the expert learns.

However, analysis of m-equilibria shows that this logic may be flawed. Consider first
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Figure 1: Sufficient learning jumps for a decreasing hazard rate

the case of a classic grim trigger strategy, i.e. m = 1. The follwing proposition implies

that consumers benefit from learning in this class of equilibria.

Proposition 6. In an m = 1 equilibrium, V k
0 is strictly increasing in k and lk is weakly

decreasing in k.

That is, the consumer can benefit for two reasons: simply because the expert’s pre-

cision and therefore the advice quality improves but also because the expert’s strategy

can become more favorable over time. The intuition is that, by Lemma 3, the expert’s

profits are increasing in the precision level k (as long as the game continues). There-

fore, as precision increases, he is more inclined to give good advice in order to reap the

increasing future benefits.

To further illustrate the previous result and also to shed light on the dynamics in

m-equilibria for m > 1, we now consider the case of only two precision levels, p1 and p2.

We are primarily interested in the expert’s choice of optimal thresholds l1 and l2, since

they determine the distribution of welfare between the consumer and the expert. First,

we study the 1−equilibrium in which the consumer ends the relationship after the first

miss. The following lemma shows that the expert’s choice depends on how large δ is

relative to p1 and p2.
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Lemma 6. Let n = 2. If the consumer ends the game after one miss, the expert’s advice

choices l1, l2 are given by

(l1, l2) =


(1, 1), for δ < 1

2p2−1/2

(1, 0), for 1
2p2−1/2

< δ < 1
p1+p2−1/2

(0, 0), for δ > 1
p1+p2−1/2

(16)

The previous lemma implies that consumers benefit from learning in the m = 1

equilibrium: In equilibrium, l2 (or more generally ln for n rounds of learning) must

equal 0. Otherwise, the consumer would be better off ending the advice relationship

once the last precision level is reached, i.e. the m = 1 strategy would not be a best

response. This implies that the cutoffs lk are weakly decreasing in k in the n = 2 case

and therefore advice improves in k for two reasons. First, the consumer can benefit

from a lower lk and thus a more honest advice strategy from the expert. Second, even

if l1 = l2 = 0 and therefore the expert’s advice strategy remains constant, the consumer

benefits from learning as the signal technology improves.

While consumers benefit from learning in an m = 1 equilibrium, this is not neces-

sarily the case in an m > 1 equilibrium. We illustrate this in the simplest possible case,

i.e. only one round of learning (n = 2) and m = 2. In this case, we show that there

are parameter values for which l1 = 0 and l2 = 1 in an m = 2 equilibrium. That is,

the expert is less willing to give good advice after the signal technology improved. In

our example, this change in expert strategy affects the consumer’s payoff more than the

improvement in signal technology and therefore the consumer’s value will be lower at

the beginning of a period with improved signal technology than at the beginning of the

game.

Lemma 7. Let n = 2. In an m = 2 equilibrium, l1 = 0 and l2 = 1 if and only if both

1 + δ/4

1− δ/2− δ2p2/2
> max

{
1 + δ/2

1− δ/2− δ2/4
,

(1 + δ)/2− δ2p2/2

1− p2δ − (1− p2)δ2p2

}
and

1

2
+

(1− p1)δ

2
+
p1δ(1 + (1− p1)δ)(1 + δ/4)

1− δ/2− δ2p2/2

≥ max

{
1 + δ/4 +

(δ/2 + δ2p1/2)(1 + δ/4)

1− δ/2− δ2p2/2
, 1 + δ/2 +

(δ/2 + δ2/4)(1 + δ/4)

1− δ/2− δ2p2/2

}
hold.

Thus, an m = 2 equilibrium with l1 = 0 and l2 = 1 exists if the two inequalities

above hold simultanenously. For δ = .98, p1 = .85 and p2 = .95 both inequalities hold

with strict inequality. Furthermore, for VO = 30, we get V 2
0 ≈ 31.33 < 31.56 ≈ V 1

0 ,

which proves the following result:
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Proposition 7. There exists an open set of parameters such that V 1
0 > V 2

0 in an m = 2

equilibrium.

What is the intuition behind these results? Let us first consider Proposition 6.

Knowing the consumer better means that the expert is better able to keep the consumer

satisfied. The expert’s value from giving good advice is higher when the signal is better

because he is less likely to lose the consumer due to random errors. However, the

value of recommending the bonus option does not depend on the signal technology.

Thus, improvements in signal technology make it relatively more attractive to give good

advice. Technically, the better the signal technology, the higher the continuation value

of the relationship for the expert. This means that future payoffs and a continuation

of the relationship gain in importance when the expert’s signal technology improves

and he is therefore more willing to give good advice. We call this the value effect of

improved information and note that this effect is positive for the consumer.

Proposition 7 illustrates another dynamic effect that comes into play in more com-

plicated equilibria. If the expert does not expect the consumer to end the advice rela-

tionship in case of a miss, it may be optimal for the expert to gamble: recommend the

bonus option today and hope, in case of a miss, that recommending option 1 tomorrow

will prevent the consumer from ending the relationship. The better the expert gets to

know the consumer, the greater the incentive to gamble: The improved signal means

that it is more likely that he will be able to provide a good recommendation if that

is what is needed to keep the consumer tomorrow. Put differently, the risk of ending

the relationship is lower because the expert can be reasonably confident of providing

a fitting recommendation “on the spot” if this is needed to keep the consumer. This

gambling effect is negative for the consumer. In the example above, the gambling ef-

fect outweighs the value effect, so the consumer’s continuation value is higher when the

signal technology is worse. Note that the gambling effect is not present in m = 1 equilib-

ria, since in such an equilibrium the consumer ends the advice relationship immediately

after the first miss.

We will now turn to the question of anonymization. The use of anonymized services

makes relationship-specific learning impossible. For example, an internet search engine

cannot personalize search results if the consumer uses an anonymized version of the

search engine.9 In our model, anonymization corresponds to facing an expert who

always remains at the precision level p1 due to his inability to learn. Will the consumer

benefit from anonymization? In a Markov equilibrium, the consumer surplus is always

equal to the outside option, so anonymization has no effect. In an m = 1 equilibrium,

on the other hand, anonymization harms the consumer: such an equilibrium exists only

9Anonymized versions of major internet search engines are widely available, see for example https:
//www.startpage.com.
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if E always recommends option 1 and in this case it is clear that the consumer would

lose from anonymization.10 However, the consumer can benefit from anonymization in

m-equilibria with m > 1. Consider the example above, on which Proposition 7 was

based. An equilibrium with m = 2 also exists in the game where no learning is possible

due to anonymization. In this anonymization equilibrium, l = 0 and the consumer value

is V 1
0 = 36.44 which is larger than V 1

0 and V 2
0 in the equilibrium without anonymization.

The intuition is that in this example learning leads to gambling, i.e. when precision

equals p2, E is sufficiently confident that he can produce a hit on demand. Hence, he

finds it optimal to recommend the bonus option in case the last recommendation was a

hit. Without learning, the precision is too low to allow E to gamble and C benefits from

sincere advice (albeit with a lower precision). This establishes the following result.

Proposition 8. In Markov equilibrium anonymization neither harms nor benefits the

consumer. In m = 1 equilibria the consumer always loses from anonymization while in

m > 1 equilibria the consumer can benefit from anonymization for certain parameter

values.

6. Experimental Design and Results

In this section, we present the design of our laboratory experiment and its main results.

Additional results and robustness checks can be found in Appendix C.

6.1. Experimental Design

The experiment was conducted between December 2021 and February 2022 at the

Cologne Laboratory for Economic Research, University of Cologne. We used the ex-

perimental software oTree (Chen et al. (2016)) and recruited participants via ORSEE

(Greiner (2015)). The study was preregistered in the AEA RCT Registry (Gramb

and Schottmüller (2022)), its unique identifying number is: AEARCTR-0008682. Par-

ticipants were randomly assigned to either the control group or the treatment group.

In both groups, participants first read the instructions for their group, see Appendix

B (in German), and answered a set of incentivized control questions. Then, players

were randomly assigned the role of expert or consumer. Framing of roles was neutral

in instructions and experiment. Subsequently, they played ten supergames (seven su-

pergames in the pilot session in December, which was a treatment group session) of the

game described in Section 3, each in their assigned role. After each supergame, each

participant was randomly matched with another participant with the opposite role for

the next supergame. The discounting of payoffs in the experiment was simulated by

10Note that the existence of an m = 1 equilibrium with anonymization implies that E will always
recommend option 1 in the m = 1 equilibrium without anonymization: this follows directly from (9)
and the facts that Πk

t = 0 for t > 0 in m = 1 equilibrium and Πk+1
0 is weakly larger with learning than

without.
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an exogenous stopping probability. After each round of a supergame, the game was

exogenously ended with a probability of 10%, corresponding to a value of δ = 0.9 in our

model. In the control group, experts had a constant signal strength of 0.82. That is, the

control group can be interpreted as a setting in which advice is given anonymously and

therefore learning is not possible. In the treatment group, the first precision level was

also 0.82 and precision was increased by 0.02 after each hit up to a maximum precision

of 0.9. That is, the treatment group represents a setting in which personalized advice

and incremental learning is possible. Once a consumer decided to end the game in either

group, he immediately received a payoff of 5 points (while the expert’s bonus and the

consumer’s payoff in case of a hit were both 1 point). It should be noted that in our

model the outside option is paid out at the beginning of the next period (since it always

exists). Thus, the payout of 5 points after firing the expert corresponds to an outside

option of VO = 5
δ

= 50
9

= 5.5̄. After all supergames were completed, one supergame was

randomly selected for each participant and the points earned there were paid out (with

one point being worth 1e). At the end, participants were asked incentivized questions

eliciting their risk attitude and completed a non-incentivized survey about trust atti-

tude, age, gender and faculty. Additionally, each participant was paid a show-up fee of

4e. Participants’ total payments ranged from 4e to 25e. One session lasted between

29 and 56 minutes. There were seven sessions with a total of 156 participants in the

treatment group and four sessions with a total of 98 participants in the control group.

No participant attended more than one session.

6.2. Results

The main outcomes we are interested in are advice quality and consumer welfare in both

groups. Let us start with advice quality. We measure this as the share of good advice

given by the expert (in terms of the recommendation of option 1) in all situations where

he faced a tradeoff (bonus option was option 2). Figure 2 shows that the advice quality

in the treatment group is significantly better than in the control group. Hence, the

potential increase in learning level incentivizes the experts to give better advice to retain

consumers. As can be seen in Figure 3, this expert behavior leads to higher average

consumer welfare in the treatment group, although the difference is not significant. A

possible reason for the (only) small increase in consumer welfare in the treatment group

is that consumers tend to distrust the expert more at higher learning levels. This can

be seen in the firing rates in the treatment group.

In Figure 4, we see that the hazard rate11 increases overall with learning level.

Specifically, the hazard rate for precision levels p2, p3 and p4 is significantly higher than

for lower levels p0 and p1. This could also drive the effect seen in Figure 2, where

11In this general case, the hazard rate is simply the relative frequency with which consumers fire
experts at a given learning level.
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Figure 2: Advice Quality in Control and Treatment group

experts try to convince consumers not to fire them by giving them even more good

advice. Note that this behavior does not contradict our theoretical predictions: The

sufficient condition from Proposition 5 that the hazard rate decreases would require a

level p1 ≥ 0.9352 for the value p0 = 0.82. In the experiment, we set p1 = 0.84, which

is too small for the model to predict a decreasing hazard rate. One possible reason for

this increase in hazard rate could be attribution of failure: At low learning levels, the

consumer might attribute a miss to the expert’s low signal strength. At high learning

levels, it becomes increasingly likely that a miss is due to the expert’s strategy to collect

his bonus instead of giving good advice. This is then punished by the consumer who

fires such experts. Interestingly, the hazard rate in the control group is significantly

higher than the hazard rate for the first two learning levels in the treatment group. This

suggests that consumers assume that the learning incentive has a positive effect on the

relationship and do not fire the expert to establish such a long-term relationship.

7. Discussion

The results in Section 4 and 5 have implications for anonymization. Activists and ex-

perts alike recommend measures to preserve anonymity online. Although many of these

recommendations are easy to follow, such as using an anonymized version of Google
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Figure 3: Consumer Welfare in Control and Treatment group

instead of Google itself, hardly any internet user follows them. The above analysis indi-

cates that consumers might be right not to anonymize: Personalized recommendations

are more valuable not only from a total surplus perspective, but also from a consumer

perspective in m-equilibrium if m = 1 (and often also if m > 1). The reason for this

is simple. The more past usage data is available, the more valuable the customer is.

The expert, e.g. Google, does not want to risk losing valuable customers. Hence, a

customer enjoys better service when the expert can use past usage data from him. This

theoretical finding is also supported by our experimental results: As we have shown in

Section 6, experts give better advice in the treatment group where it is possible to learn

from past interactions.

The same principle applies to other applications than Google and explains why long-

term advisers are more valuable than short-term advisers. The m-equilibrium provides

an interesting prediction for the hazard rate, i.e. the probability that a consumer will

end the relationship after a certain number of hits if he has not already ended it. In an

m-equilibrium, the hazard rate decreases over time when the change in signal quality

between two learning levels is sufficiently high.

Of course, these results are subject to some caveats. The first is that the outside

option of the consumer was held constant. If the outside option is an alternative expert,
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this could change. To give an example, say there are two experts and everyone agrees

that Expert 1 is slightly more knowledgeable than Expert 2. The outside option then

corresponds to getting advice from Expert 2. If everyone uses Expert 1, however, Expert

2 might be out of business and take up a different job. In the long term, the outside

option might therefore decline and eventually drop below 1/(2− 2δ). In this case, the

unique equilibrium is that the expert recommends his bonus action in each period and

consumers would suffer. However, an m-equilibrium is not sensitive to lower outside

options as long as the outside option remains above 1/(2− 2δ).

Another caveat, particularly in the context of anonymizing online activity, is that the

model does not address potential extortion arising from abuse of data outside the advice

relationship. According to the model, a customer benefits from personalized advice and

a prerequisite for such personalized advice is that data about past interactions be stored.

If this data gets into the hands of a third party, it could be used by that third party

against the consumer; think health or financial records. Such third-party extortion is

beyond the scope of this paper.

Another interesting result was given in Proposition 7 as it showed that too much

past data can also reduce the consumer’s utility (although it is always higher than his

outside option). Consequently, whether anonymization is optimal or not is ambiguous
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and depends on the particular equilibrium played as well as the model parameters.

8. Conclusion

In this paper, we have studied an expert-consumer relationship in which the expert

gets to know the consumer over time and in this way can give better advice as the

relationship progresses. We have shown that this learning opportunity can be beneficial

to both the consumer and the expert by introducing m-equilibria as a generalization

of simple grim-trigger strategies. Empirical evidence from our laboratory experiment

suggests that experts do indeed give better advice when learning is possible. However,

the consumer must be aware that too much learning on the part of the expert can be

detrimental to consumer welfare. The choice of how much and what data to disclose is

therefore a difficult one.
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Appendix

A. Proofs

Proof of Proposition 1. With β = 1− 1/[(2p− 1)δΠ], it is straightforward to determine

Π:12

Π =
1

2
+ (p+ β(1− p)) δΠ =

1

2
+

(
p+ (1− p)− 1− p

(2p− 1)δΠ

)
δΠ

⇔ Π =
4p− 3

(1− δ)(4p− 2)
.

Plugging this back into (2) (with equality) yields

β∗ = 1− 2(1− δ)
δ(4p− 3)

.

A non-babbling Markov equilibrium exists if β∗ ∈ [0, 1] which is the case if and only if

1− δ
δ
≤ 4p− 3

2
.

Proof of Lemma 1. Suppose βk = 1 and distinguish between the two cases of either

option 1 or option 2 being E’s bonus option (both happen with probability 1
2
). E’s

value as a function of α is then

Πk =
1

2

(
pkδΠk+1 + (1− pk)δΠk

)
(1 + α) +

1

2
+

1

2
(1− α)

(
pkδΠk + (1− pk)δΠk+1 + 1

)
=

1

2
(2− α) +

1

2
δΠk+1(2pkα + 1− α) +

1

2
δΠk(1 + α− 2pkα)

⇔ Πk =
2− α

2− δ − δα + 2pkδα
+

δ − δα + 2pkδα

2− δ − δα + 2pkδα
Πk+1.

This implies

Πk
α=0 =

2

2− δ
+

δ

2− δ
Πk+1

Πk
α=1 =

1

2(1− δ + pkδ)
+

2pkδ

2(1− δ + pkδ)
Πk+1

where Πk
α=1 is E’s equilibrium value in the supposed equilibrium (where E uses the

strategy αk = 1) and Πk
α=0 is a deviation value that E would obtain if he deviated from

the supposed equilibrium strategy by choosing αk = 0 (without changing his strategy

12As E is indifferent between recommending option 1 and recommending option 2 in case option 2
is his bonus option, his value is as if he always recommended option 1.
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for k′ 6= k). For αk = 1 to be optimal Πk
α=1 ≥ Πk

α=0 has to hold. However, it is now

shown that Πk
α=0 > Πk

α for any α > 0. This inequality can be written as

2

2− δ
+

δ

2− δ
Πk+1 >

2− α
2− δ − δα + 2pkδα

+
δ − δα + 2pkδα

2− δ − δα + 2pkδα
Πk+1

⇔ 4− 2δ − 2δα + 4pkαδ + (2− δ−δα + 2pkαδ)δΠk+1

> 4 + αδ − 2δ − 2α + (2 + αδ − δ − 2α + 4pkα− 2pkδα)δΠk+1

⇔ −3αδ + 2α + 4αpkδ > (1− δ)(4pkα− 2α)δΠk+1.

The latter inequality is true for all α > 0 because Πk+1 is bounded from above by

1/(1− δ) (which would be E’s discounted payoff stream if he always recommended his

bonus option and C always continued) and the previous inequality holds with 1/(1− δ)
in place of Πk+1:

−3αδ + 2α + 4αpkδ > (1− δ)(4pkα− 2α)
δ

1− δ
⇔ α(2− δ) > 0.

This shows that αk = 0 is the only best response to βk = 1 and therefore Πk
α=1 < Πk

α=0.

Consequently, βk = αk = 1 cannot be an equilibrium.

Proof of Lemma 2. Proposition 1 implies V n = VO. Suppose V k > VO for some k and

let k′ be the highest such k. Then αk
′

must be sufficiently high in order to yield a

higher expected payoff than (1 − δ)VO to C in every period with precision pk
′
. Now

consider C’s decision problem after a miss in a period with precision pk
′
. As V k′ > VO

by the definition of k′, C strictly prefers to continue. Hence, βk
′
= 1. However, E’s best

response to βk
′

= 1 is αk
′

= 0, see the proof of Lemma 1. But given that V k = VO for

all k > k′ by the definition of k′ and given that αk
′

= 0 clearly V k′ < VO contradicting

the definition of k′. Hence, V k > VO cannot happen for any k in equilibrium. As C

can always guarantee himself a payoff of VO by ending the game, this concludes the

proof.

Proof of Proposition 2. As E is mixing in a non-babbling Markov equilibrium when

the bonus option is option 2, his value will equal the value he would get if he always

recommended option 1 (keeping C’s strategy fixed):

Πk =
1

2
+ pkδΠk+1 + (1− pk)βkδΠk.
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Plugging (6) in for βk yields

Πk =
1

2
+ pkδΠk+1 + (1− pk)δΠk+1 − 1− pk

2pk − 1

⇔ Πk = δΠk+1 +
4pk − 3

4pk − 2
.

Recall from the proof of Proposition 1 that Πn = (4pn − 3)/[(4pn − 2)(1 − δ)]. Using

this as a starting point for backward induction in the previous equation yields (8).

Next we will show that Πk is strictly increasing in k. Let h(pk) = (4pk−3)/(4pk−2)

and note that h′ > 0 for pk ∈ (1/2, 1]. To start, we show by induction that (1− δ)Πk ≥
h(pk). This is obviously true for k = n. Now suppose (1− δ)Πk ≥ h(pk) is true for all

k ≥ j + 1, then (1− δ)Πj = (1− δ)δΠj+1 + (1− δ)h (pj) ≥ δh (pj+1) + (1− δ)h (pj) ≥
h (pj) where the first inequality is the induction hypothesis and the second follows from

the monotonicity of h. Consequently (1 − δ)Πk ≥ h(pk) for all k ∈ {1, . . . , n}. As

Πk+1 −Πk = (1− δ)Πk+1 − h(pk) ≥ h
(
pk+1

)
− h

(
pk
)
> 0, it follows that Πk is strictly

increasing in k.

For existence of a non-babbling Markov equilibrium, a βk ∈ [0, 1] has to exist to

make E indifferent between the two recommendations in case option 2 is the bonus

option. For βk = 1, E strictly prefers to recommend option 2. As the incentives to

recommend option 1 are strictly decreasing in βk, a βk ∈ [0, 1] will exist if and only if E

prefers recommending option 1 (in case option 2 is the bonus option) for βk = 0. That

is, if

1 + (1− pk)δΠk+1 ≤ pkδΠk+1

⇔ Πk+1 ≥ 1

δ(2pk − 1)
.

This condition is most demanding for k = 1 because pk and Πk are both increasing in

k. Hence, a non-babbling Markov equilibrium exists if and only if Π2 ≥ 1/(δ(2p1− 1)).

Plugging in the above derived expression for Π2, this is condition (7).

Proof of Lemma 3. The first claim is proven by a simple strategy copying argument.

To show the monotonicity of Πk
0 in k let αkt be E’s best response strategy to C’s m-

strategy. More precisely, αkt is the probability with which E recommends option 1 when

it is not the bonus option (after t misses when the signal precision is pk). To show that

Πk+1
0 ≥ Πk

0, we will show that E can achieve a value of Πk
0 at precision k + 1 (after 0

misses). Note that a signal of precision pk+1 is sufficient for a signal of precision pk.

That is, E could inject noise into his signal at precision pk+1 in order to end up with a

signal of precision pk. Suppose for all k̃ ≥ k+1 (and all t) E injects noise into his signal

such that the new signal has precision pk̃−1 and then plays the strategy α̂k̃t = αk̃−1
t .
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Equivalently, E can use his improved signal and adjust his behavior to inject some noise

in this way.13 Clearly, this will yield a value of Πk
0 (at precision k + 1 after 0 misses).

Hence, Πk+1
0 has to be at least Πk

0 (and is usually higher as the described strategy is

not optimal).

Next we show an intermediate result: Πk
t ≤ Πk+1

0 in every m-equilibrium. To see

this, note that E’s payoffs are bounded from above by 1/(1 − δ), i.e. the value of

recommending the bonus option each period and C never stopping the game. Put

differently, per period payoffs are below 1. This implies (1− δ)Πk+1
0 ≤ 1. Now suppose,

by way of contradiction, Πk
t > Πk+1

0 . Then also Πk
t−1 > Πk+1

0 because E can after

t− 1 misses simply recommend his bonus option which would then give him a value of

1 + δΠk
t /2 + δΠk+1

0 /2 > 1 + δΠk+1
0 ≥ Πk+1

0 where the first inequality uses Πk
t > Πk+1

0

and the second inequality uses (1 − δ)Πk+1
0 ≤ 1. Hence, Πk

t−1 > Πk+1
0 . Iterating this

argument yields Πk
0 > Πk+1

0 . However, Πk
0 > Πk+1

0 contradicts the first result of Lemma

3 shown above. Hence, Πk
t ≤ Πk+1

0 holds in every m-equilibrium.

Πk
t ≥ Πk

t+1 is shown using the intermediate result of the previous paragraph. Let E

recommend his bonus option after t misses (at precision k). This (possibly non-optimal

strategy) yields a value of 1 + δΠk+1
0 /2 + δΠk

t+1/2 ≥ 1 + δΠk
t+1 ≥ Πk

t+1 where the first

inequality uses Πk
t+1 ≤ Πk+1

0 (see previous paragraph) and the second inequality uses

Πk
t+1 ≤ 1/(1 − δ). As recommending E’s bonus option after t misses yields a value of

at least Πk
t+1, the result Πk

t ≥ Πk
t+1 follows.

Proof of Lemma 4. lk is the smallest natural number t such that after t consecutive

misses, it is optimal for the expert to recommend option 1. We can thus take condition

(9) and replace t− 1 by t. Then, it can be written as Πk
t+1 ≤ Πk+1

0 − 1
(2pk−1)δ

. Hence lk

is the smallest natural number t for which the latter condition holds. More explicitely,

lk = min{t ∈ N|Πk
t+1 ≤ Πk+1

0 − 1

(2pk − 1)δ
}

= max

0,min{t ∈ N|Πk
t ≤ Πk+1

0 − 1

(2pk − 1)δ︸ ︷︷ ︸
(∗)

} − 1

 .

13More precisely, let γk̃ = (pk̃ − pk̃−1)/(pk̃ − 1/2). This is chosen such that drawing from the

prior with probability γk̃ and with the counter probability from a signal technology with precision

pk̃ yields a signal of precision pk̃−1. If option 1 is the bonus option, let E recommend option 1

with probability 1 − γk̃/2 and option 2 with probability γk̃/2. If option 2 is the bonus option, let

α̂k̃t = (1− γk̃/2)αk̃−1
t + (γk̃/2)(1− αk̃−1

t ). This yields Π̂k̃
t = Πk̃−1

t .
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Using formula (10), we can reformulate the condition (∗) via

(∗)⇔
m−1−t∑
j=0

(δ(1− pk))j
(

1

2
+ pkδΠk+1

0

)
≤ Πk+1

0 − 1

(2pk − 1)δ

⇔
m−1−t∑
j=0

(δ(1− pk))j ≤
Πk+1

0 − 1
(2pk−1)δ

1
2

+ pkδΠk+1
0︸ ︷︷ ︸

=:P

⇔ 1− (δ(1− pk))m−t

1− δ(1− pk)
≤ P

⇔ 1− (1− δ(1− pk))P︸ ︷︷ ︸
=:A

≤ (δ(1− pk)︸ ︷︷ ︸
=:B

)m−t

Looking at this last inequality, we see that it is always satisfied if A ≤ 0 and that it is

never satisfied if P < 0 (which is equivalent to Πk+1
0 < 1

(2pk−1)δ
). These cases correspond

to lk = 0 and lk = m, respectively. In all the other cases, we can apply the natural

logarithm on both sides since they will be positive. We continue:

⇒ ln(A) ≤ (m− t) ln(B)

⇔ ln(A)

ln(B)
≥ m− t (as ln(B) < 0)

⇔ t ≥ m− ln(A)

ln(B)

This implies that lk =
⌈
m− 1− ln(A)

ln(B)

⌉
whenever the number inside the ceiling function

is larger than -1 and lk = 0 else.

Proof of Lemma 5. Define Π̃t(Π0) (for t ∈ {0, 1, . . . ,m}) by iterating backwards start-

ing from Π̃m = 0 and using the following formula:

Π̃t−1(Π0) =

1/2 + pnδΠ0 + (1− pn)δΠ̃t(Π0) if Π0 − Π̃t(Π0) ≥ 1
δ(2pn−1)

1 + 1
2
δΠ0 + 1

2
δΠ̃t(Π0) else.

(17)

Note that the case distinction is done such that Π̃t is continuous (Π̃t−1(Π0) is simply the

maximum of the expression in the first and second case). Clearly, the derivative Π̃′m−1

exists for almost all values of Π0 and is in {δ/2, pnδ}. Hence, Π̃′m−1 < δ ≤ 1. Iterating

backwards, Π̃t is continuous and its derivative exists for almost all Π0. Furthermore,

Π̃′t−1(Π0) ∈ {pnδ+ (1− pn)δΠ̃′t(Π0), δ/2 + δΠ̃′t(Π0)/2} and therefore – given that Π̃′t < δ

– we have Π̃′t−1 < δ. In particular, Π̃0(Π0) is continuous and has a derivative (which

exists almost everywhere) that is strictly positive and strictly smaller than δ ≤ 1. The

operator Π̃0 is therefore a contraction and the equation Π̃0(Π0) = Π0 has a unique
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solution Π∗0 by the contraction mapping theorem.

Next we show that Π∗0 ∈ (0, 1/(1 − δ)). To this purpose it is sufficient to show

Π̃0(0) > 0 and Π̃0(1/(1 − δ)) < 1/(1 − δ). Clearly, Π̃t−1(0) > 0 and in particular

Π̃0(0) > 0 holds. Turning to Π̃0(1/(1 − δ)) < 1/(1 − δ), note that Π̃m−1(1/(1 − δ)) <
1/(1 − δ) as both 1/2 + pnδ/(1 − δ) < 1/(1 − δ) and 1 + δ/(2(1 − δ)) < 1/(1 − δ)

hold. Now proceeding by backward induction Π̃t−1((1/(1 − δ)) < 1/(1 − δ) given that

Π̃t((1/(1 − δ)) < 1/(1 − δ) as both 1/2 + pnδ/(1 − δ) + (1 − pn)δ/(1 − δ) ≤ 1/(1 − δ)
and 1 + δ/(2(1 − δ)) + δ/(2(1 − δ)) ≤ 1/(1 − δ) hold. Given that Π∗0 ∈ (0, 1/(1 − δ)),
also Π̃t−1(Π∗0) ∈ (0, 1/(1− δ)) for all t ∈ {1, . . . ,m} by the same steps.

Note that E’s value when playing best response against an m-strategy has to satisfy

Πn
t = Π̃t(Π

n
0 ) for all t ∈ {0, . . . ,m − 1}. As we have just shown, there exists a unique

solution to this condition and this solution is feasible, i.e. E’s value is in (0, 1/(1− δ)).
E’s best response strategy is given by the case distinctions in (17): If Π∗0 − Π̃t(Π

∗
0) ≥

1/(δ(2pn−1)), then E recommends option 1 after t−1 misses. Otherwise, E recommends

his bonus option. Finally, note that E’s best response is a cutoff strategy as Π̃t(Π
∗
0) is

decreasing in t. This can be shown as in the proof of Lemma 3.

Proof of Proposition 3. By (1), an m-equilibrium cannot exist if E always recommends

his bonus option. This strategy yields a payoff after 0 misses of

Π0 =
m−1∑
j=0

(
δ

2

)j
(1 + δΠ0/2) =

(1 + δΠ0/2)(1− (δ/2)m)

1− δ/2

which can be solved for Π0 yielding

Π∗0 =
1− (δ/2)m

1− δ + (δ/2)m+1
.

Always recommending the bonus option is not E’s best response if after m − 1 misses

(9) holds with Π∗0 in place of Πk+1
0 and zero in place of Πk

t+1, i.e. if

1− (δ/2)m

1− δ + (δ/2)m+1
≥ 1

δ(2pn − 1)
.

If the opposite of this inequality holds, then always recommending the bonus option

is E’s best response to C’s m-strategy (and this best response is unique by Lemma 5)

and therefore no m-equilibrium can exist. This gives the condition in (13). If (13)

does not hold, then E’s unique best response to C’s m-strategy includes recommending

option 1 after m-1 misses. This implies that C’s value when using his m-strategy is

strictly above (1/2)/(1− δ) (given that VO satisfies (1)) and therefore there exist values

of VO > (1/2)/(1− δ) such that C’s value is above VO if C plays an m-strategy and E
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plays his best response to this strategy.

Proof of Proposition 4. We compute E’s conditional value depending on the event w ∈
W that occured and then sum over all possible events (making a distinction between

histories in which learning level n is reached and those in which the advice relationship

was dissolved before). More concretely, we get

Π0 =
∑
w̄∈W

P(w = w̄)E(Π0|w = w̄).

For w̄ ∈ Wn, we get

P(w = w̄) =
n−1∏
i=1

P(wi = w̄i) =
n−1∏
i=1

(
1{w̄i≤li}(

1

2
)w̄i + 1{w̄i>li}(

1

2
)l
i

(1− pi)w̄i−li−1pi
)
,

E(Π0|w = w̄) =
n−1∑
k=1

Hkδ
∑k−1
j=1 w̄j + δ

∑n−1
j=1 w̄jCn−1.

In the above equation, Hk denotes the expert’s expected value in learning level pk (in

which he will spend w̄k periods). Moreover, Cn−1 is the expert’s continuation value

after the (n − 1)−th hit at the first period with learning level pn. Both Hk and Cn−1

are computed below.

Hk = 1{w̄k≤lk}

w̄k−1∑
h=0

δh + 1{w̄k>lk}

lk−1∑
h=0

δh +
1

2

w̄k−1∑
h=lk

δh

 (18)

Cn−1 =
ln−1∑
g=0

(
δ

2
)g + (

δ

2
)g+1Cn−1 +

m−1∑
g=ln

(
1

2
)l
n

δg(1− pn)g−l
n

pnCn−1 + δg(
1

2
)g−l

n

(19)

⇔ Cn−1 =

∑ln−1
g=0 ( δ

2
)g +

∑m−1
g=ln δ

g(1
2
)g−l

n

1−
∑ln−1

g=0 ( δ
2
)g+1 −

∑m−1
g=ln(1

2
)lnδg(1− pn)g−lnpn

In the above computations, (18) follows since the expert will recommend his bonus

option lk times after reaching a new learning level (assuming that all these recommen-

dations produce misses). Only after lk misses, he will recommend option 1, which yields

him 1
2

per period in expectation, since bonus option and option 1 are drawn indepen-

dently. Equation (19) reflects the fact that the experts continuation value after n − 1

hits and after n hits (or more) is the same, since no further learning happens after

precision pn is reached.
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For w̄ ∈ Wf , we get

P(w = w̄) =

len(w̄)∏
i=1

P(wi = w̄i)

= (
1

2
)l
len(w̄)

(1− plen(w̄))m−l
len(w̄)

len(w̄)−1∏
i=1

(
1{w̄i≤li}(

1

2
)w̄i + 1{w̄i>li}(

1

2
)l
i

(1− pi)w̄i−li−1pi
)
,

(20)

E(Π0|w = w̄) =

len(w̄)−1∑
k=1

Hkδ
∑k−1
j=1 w̄j + δ

∑len(w̄)−1
j=1 w̄j

llen(w̄)−1∑
h=0

δh +
1

2

m−1∑
h=llen(w̄)

δh

 . (21)

Equation (20) follows since m consecutive misses in learning level len(w̄) only occur if

the bonus option was different from option 1 for llen(w̄) periods in a row and the expert

failed to generate good advice in the remaining m− llen(w̄) periods. Likewise, the term

in the brackets in (21) describes the expected payoff of the expert in the learning level

in which m consecutive misses are produced. Putting all the above formulas together

yields the desired result.

Proof of Proposition 5. The probability of having m consecutive misses conditional on

reaching precision level k does of course not only depend on the precision level, but also

on the strategy lk of the expert. More concretely,

HR(k) =

(
1

2

)lk
(1− pk)m−lk .

As 1−pk < 1
2

for all k by assumption, for (weakly) decreasing values of l (i.e. lk+1 ≤ lk)

the hazard rate HR(k) is (strictly) decreasing in k. When lk is strictly increasing, then

it cannot increase to lk+1 = m by Remark 1. Hence, we always have m − lk+1 > 0 in

this case. We now derive the sufficient condition for the hazard rate to be (weakly)

decreasing:

HR(k + 1) ≤ HR(k)⇔
(

1

2

)lk+1

(1− pk+1)m−l
k+1 ≤

(
1

2

)lk
(1− pk)m−lk

⇔
(

1

2(1− pk)

)lk+1−lk

≤
(

1− pk

1− pk+1

)m−lk+1

Since the LHS of the last inequality is increasing in lk+1 and decreasing in lk and

the RHS is decreasing in lk+1, it is sufficient to consider lk+1 = m − 1 and lk = 0 (the

extreme cases), which yields
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(
1

2(1− pk)

)m−1

≤ 1− pk

1− pk+1
⇔ 1− pk+1 ≤ (1− pk)m2m−1

⇔ pk+1 ≥ 1− (1− pk)m2m−1

This concludes the proof.

Proof of Proposition 6. We will show by induction that lk = 1 implies lk−1 = 1 in an

m = 1 equilibrium. However, note first that ln = 0 in an m = 1 equilibrium as the

consumer would otherwise be better off by ending the advice relationship immediately

when reaching precision level pn.

Now assume that lk = 1 for some k ∈ {2, . . . , n−1}. This implies that the expected

payoff of the expert when choosing lk = 1, namely 1 + δΠk+1
0 /2, is greater or equal

than his expected payoff when choosing lk = 0, namely 1/2 + pkδΠk+1
0 . Put differently,

1+δΠk+1
0 /2 ≥ 1/2+pkδΠk+1

0 or equivalently 0 ≥ −1/2+δΠk+1
0 (pk−1/2). As 0 < Πk

0 ≤
Πk+1

0 and 1/2 ≤ pk−1 < pk this inequality implies 0 ≥ −1/2 + δΠk
0(pk−1 − 1/2) which

is equivalent to saying that the expected payoff of the expert is higher when choosing

lk−1 = 1 than when choosing lk−1 = 0. Consequently, lk = 1 implies lk−1 = 1.

Hence, in an m = 1 equilibrium lk = 1 for k ≤ k̄ and lk = 0 for k > k̄ for some

k̄ ∈ {0, . . . , n}. The result on V k
0 now readily follows as an increase in k improves the

quality of advice in two ways: (i) lk may decrease and, (ii) pk increases.

More formally, V n
0 = pn(1 + δV n

0 ) ⇔ V n
0 = pn/(1 − pnδ) and V k

0 = pk(1 +

δV k+1
0 ) for k ∈ {k̄ + 1, . . . , n − 1}. For now let k̄ ≤ n − 2, then V n

0 > V n−1
0 holds

as pn/(1 − δpn) > pn−1 (1 + δpn/(1− δpn)) ⇔ pn−1/pn < (1 − δpn)/(1 − δpn) = 1

which is true by pn−1 < pn.14 Using this as the starting point for backward induction

V k
0 = pk(1 + δV k+1

0 ) > pk−1(1 + δV k
0 ) = V k−1

0 by the induction hypothesis V k+1
0 > V k

0

and pk > pk−1 for all k − 1 > k̄. The backward induction logic extends to k̄ where

V k̄
0 = (1 + δV k̄+1

0 )/2 < pk̄+1
(

1 + δV k̄+2
0

)
= V k̄+1

0 by 1/2 < pk̄+1 and V k̄+1
0 < V k̄+2

0 .

The backward induction argument continues further for k < k̄ as there V k
0 = (1 +

δV k+1
0 )/2 < (1 + δV k+2

0 )/2 = V k+1
0 where the inequality follows from the induction

hypothesis V k+1
0 < V k+2

0 .

Proof of Lemma 6. We are using formulas (10) and (11) to compute the expert’s value

Π2
0 for different values of l2.

14Clearly, the argument below still holds true for the case k̄ = n− 1.
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i) l2 = 0

⇒Π2
0 =

1

2
+ p2δΠ2

0

⇔Π2
0 =

1

2(1− p2δ)

ii) l2 = 1

⇒Π2
0 = 1 +

1

2
δΠ2

0

⇔Π2
0 =

1

1− 1
2
δ

This implies that l2 = 1 yields a higher expected value than l2 = 0 for the expert if

1− 1

2
δ < 2(1− p2δ)

⇔δ < 1

2p2 − 1
2

holds. The only thing that is left to check now is what the optimal choice for l1 is in

each of the two cases above.

i)

l1 = 0⇒ Π1
0 =

1

2
+ p1δΠ2

0 =
1

2
+

p1δ

2(1− p2δ)

l1 = 1⇒ Π1
0 = 1 +

δ

2
Π2

0 = 1 +
δ

4(1− p2δ)

1

2
+

p1δ

2(1− p2δ)
> 1 +

δ

4(1− p2δ)
⇔

(p1 − 1
2
)δ

2(1− p2δ)
>

1

2
⇔ δ >

1

p1 + p2 − 1
2

Hence, in the case l2 = 0, the expert will choose l1 = 0 if δ > 1
p1+p2− 1

2

and he will

choose l1 = 1 if δ < 1
p1+p2− 1

2

holds.

ii)

l1 = 0⇒ Π1
0 =

1

2
+ p1δΠ2

0 =
1

2
+

p1δ

1− 1
2
δ

l1 = 1⇒ Π1
0 = 1 +

δ

2
Π2

0 = 1 +
δ

2− δ
1

2
+

p1δ

1− 1
2
δ
> 1 +

δ

2− δ
⇔ δ >

1

2p1 − 1
2

Since the latter equation is never satisfied for l2 = 1 due to δ < 1
2p2− 1

2

< 1
2p1− 1

2

, l2 =
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1 always implies l1 = 1.

This completes the proof.

Proof of Lemma 7. Solving via backward induction, we start determining l2 by going

through three different cases.

1. l2 = 0: Then Π2
1 = 1/2 + p2δΠ2

0 and Π2
0 = 1/2 + p2δΠ2

0 + (1 − p2)δΠ2
1. Plugging

the first expression into the second one and solving for Π2
0 yields

Π2
0 =

(1 + δ)/2− δp2/2

1− p2δ − (1− p2)δ2p2
. (22)

2. l2 = 1: Then Π2
1 = 1/2 + p2δΠ2

0 and Π2
0 = 1 + δΠ2

0/2 + δΠ2
1/2 which can be solved

for

Π2
0 =

1 + δ/4

1− δ/2− δ2p2/2
. (23)

3. l2 = 2: Then Π2
1 = 1 + δΠ2

0/2 and Π2
0 = 1 + δΠ2

0/2 + δΠ2
1/2 which can be solved

for

Π2
0 =

1 + δ/2

1− δ/2− δ2/4
. (24)

Therefore, l2 = 1 is the expert’s best response if and only if

1 + δ/4

1− δ/2− δ2p2/2
> max

{
1 + δ/2

1− δ/2− δ2/4
,

(1 + δ)/2− δ2p2/2

1− p2δ − (1− p2)δ2p2

}
.

Conditional on l2 = 1 being the expert’s best response in learning level 2, we will now

check under which conditions l1 = 0 is the expert’s best response in learning level 1.

Again, we have to go through three cases.

1. l1 = 0: Then Π1
1 = 1/2 + p1δΠ2

0 and Π1
0 = 1/2 + p1δΠ2

0 + (1− p1)δΠ1
1. Plugging in

yields

Π1
0 =

1

2
+

(1− p1)δ

2
+
p1δ(1 + (1− p1)δ)(1 + δ/4)

1− δ/2− δ2p2/2
.

2. l1 = 1: Then Π1
1 = 1/2 + p1δΠ2

0 and Π1
0 = 1 + δΠ2

0/2 + δΠ1
1/2. Plugging in yields

Π1
0 = 1 + δ/4 +

(δ/2 + δ2p1/2)(1 + δ/4)

1− δ/2− δ2p2/2
.
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3. l1 = 2: Then Π1
1 = 1 + δΠ2

0/2 and Π1
0 = 1 + δΠ2

0/2 + δΠ1
1/2. Plugging in yields

Π1
0 = 1 + δ/2 +

(δ/2 + δ2/4)(1 + δ/4)

1− δ/2− δ2p2/2
.

Therefore, l1 = 0 will be the expert’s best response if and only if

1

2
+

(1− p1)δ

2
+
p1δ(1 + (1− p1)δ)(1 + δ/4)

1− δ/2− δ2p2/2

≥ max

{
1 + δ/4 +

(δ/2 + δ2p1/2)(1 + δ/4)

1− δ/2− δ2p2/2
, 1 + δ/2 +

(δ/2 + δ2/4)(1 + δ/4)

1− δ/2− δ2p2/2

}
.

B. Experiment Instructions

B.1. Control Group

Freiwilligkeit des Experimentes

Die Teilnahme an diesem Experiment ist freiwillig. Sie können die Teilnahme jederzeit

ohne Angabe von Gründen abbrechen.

Instruktionen

Bitte lesen Sie die folgenden Instruktionen sorgfältig. Vor dem Experiment bekom-

men Sie einige Kontrollfragen gestellt und Sie können bei korrekter Beantwortung Geld

gewinnen. Konkret werden Ihnen vier Kontrollfragen gestellt. Hiervon wird nach Ihren

Antworten eine zufällig ausgewählt und wenn Ihre Antwort auf diese Frage beim ersten

Versuch richtig war, bekommen Sie eine zusätzliche Auszahlung von 1,00e.

Im Folgenden werden Sie zufällig in Zweiergruppen eingeteilt und werden mit Ihrem

zugeteilten Spielpartner ein Spiel spielen. In diesem Spiel können Sie Spielpunkte erspie-

len. Auf Basis dieser Spielpunkte wird am Ende Ihre Auszahlung ermittelt, was weiter

unten erläutert wird. Zusätzlich erhalten Sie eine hiervon unabhängige Auszahlung von

4,00e für das Erscheinen und Ihre Teilnahme am Experiment. In dem Spiel werden Sie

zufällig entweder die Rolle von Spieler A oder von Spieler B übernehmen. Das Spiel

wird nun beschrieben und danach anhand eines Beispiels für zwei Spielrunden veran-

schaulicht. Dort sehen Sie auch beispielhaft die Bildschirmanzeigen, die beiden Spielern

jeweils angezeigt werden.

Entscheidungen der Spieler

Das Spiel wird über mehrere Runden gespielt und in jeder Runde hat Spieler A die

Wahl zwischen Option 1 und Option 2 und Spieler B entscheidet in der Folge, ob eine
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weitere Runde des Spiels gespielt wird. Es gibt in jeder Runde vier mögliche Fälle, die

alle gleich wahrscheinlich sind und vor jeder neuen Runde zufällig bestimmt werden.

Auszahlungen der Spieler bei Wahl von
Fälle Option 1 Option 2

1. Fall A: 1 Punkt, B: 1 Punkt A: 0 Punkte, B: 0 Punkte
2. Fall A: 0 Punkte, B: 0 Punkte A: 1 Punkt, B: 1 Punkt
3. Fall A: 1 Punkt, B: 0 Punkte A: 0 Punkte, B: 1 Punkt
4. Fall A: 0 Punkte, B: 1 Punkt A: 1 Punkt, B: 0 Punkte

Abbildung 1: Übersicht über die möglichen Auszahlungen für Spieler A und B

In jedem möglichen Fall erhält also jeder Spieler eine Auszahlung von 1 von genau

einer der beiden Optionen, während die andere Option ihm eine Auszahlung von 0 gibt.

Die Option mit der höheren Auszahlung kann entweder für beide Spieler die gleiche oder

aber eine unterschiedliche sein.

In jeder Spielrunde tritt genau einer der obigen Fälle ein, aber keiner der Spieler

weiß mit Sicherheit, welcher das ist. Spieler A bekommt jedoch immer angezeigt für

welche der Optionen er einen Punkt erhält. Darüber hinaus erhält er einen automatisch

erzeugten Hinweis darüber, welche Option Spieler B einen Punkt einbringen könnte.

Dieser Hinweis ist immer mit einer Wahrscheinlichkeit von 82% korrekt und mit einer

Wahrscheinlichkeit von 18% inkorrekt.

Nach der Entscheidung von Spieler A werden beide Spieler über ihre daraus resul-

tierenden Auszahlungen informiert. Spieler B erfährt hierbei nur, ob er eine Auszahlung

von 1 oder 0 (Spielpunkten) erhält und nicht, was der Hinweis von Spieler A war oder

welche Auszahlung Spieler A erhalten hat. Spieler A wird hingegen auch über die

Auszahlung von Spieler B informiert. Spieler B kann also keine der Optionen selbst

wählen, sondern erhält seine Auszahlung abhängig von der Wahl von Spieler A. Im An-

schluss daran kann Spieler B entscheiden, ob er das Spiel beenden oder für eine weitere

Runde fortführen möchte.

• Spieler B wählt fortführen:

In diesem Fall wird mit einer Wahrscheinlichkeit von 90% eine weitere Runde des

Spiels gespielt.

Mit einer Wahrscheinlichkeit von 10% endet das Spiel trotz der Entscheidung

von Spieler B das Spiel fortzuführen (sonst könnte das Spiel theoretisch unendlich

lange dauern). Beide Spieler erhalten ihre bis dahin erspielten Spielpunkte. Beide

Spieler erhalten die Nachricht, dass das Spiel exogen beendet wurde.

• Spieler B wählt beenden:

In diesem Fall bekommt Spieler B zusätzlich 5 Spielpunkte gutgeschrieben, Spieler
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A erhält keine weiteren Punkte. Das Spiel ist zu Ende und beide Spieler werden

darüber informiert, dass Spieler B das Spiel beendet hat.

Jede Runde des Spiels kann wie folgt in einem Schaubild veranschaulicht werden:

A beobachtet seine
Auszahlungsoption

und erhält
Hinweis über B’s

Auszahlungsoption

A wählt
Option
1 oder 2

B beobachtet die
eigene Auszahlung,
A beobachtet beide

Auszahlungen

B wählt
fortführen

oder beenden

Neues Spiel mit neuem Spielpartner

Sobald ein Spiel für alle Spieler beendet ist (entweder exogen oder weil alle Spieler B

ihr Spiel beendet haben), werden die Spielpartner neu zugelost. Jeder behält hierbei

jedoch seine Rolle als Spieler A oder Spieler B und bekommt zufällig einen Spieler des

anderen Typs zugelost. Das Spiel wird erneut gestartet. Insgesamt werden 10 Spiele

mit wechselnden Spielpartnern durchgeführt. Am Ende wird zufällig eines der 10 Spiele

ausgewählt und die dort erspielte Punktzahl wird nach Beendigung des Experimentes

(zusammen mit der festen Auszahlung) ausgezahlt. Ein Spielpunkt entspricht hierbei

1,00e.

Beispiel

In dem folgenden Beispiel (siehe Abbildung 1) wählt Spieler A in der ersten Runde Op-

tion 1 (oben links im Bild). Im Folgenden werden beide Spieler darüber informiert, dass

diese Wahl Spieler B eine Auszahlung von 0 einbringt (zu sehen ist nur der Bildschirm

von Spieler B, oben rechts). Spieler A kann so feststellen, dass sein Hinweis über Spieler

B in Runde 1 korrekt war, da der Hinweis Option 2 lautete und Option 1 Spieler B eine

Auszahlung von 0 einbrachte. Somit hätte Option 2 tatsächlich in einer Auszahlung

von 1 für Spieler B resultiert. Spieler B weiß allerdings weder welchen Hinweis Spieler

A erhalten hat, noch ob Spieler A diesem Hinweis gefolgt ist.

Im Beispiel entscheidet sich Spieler B für ”Spiel fortführen” und es wird eine zweite

Runde gespielt. Nun entscheidet sich Spieler A für Option 2 (Bild unten links). Diese

Wahl führt zu einer Auszahlung von 1 für Spieler B (siehe Bild unten rechts). Spieler

B kann nun wieder entscheiden, ob er das Spiel fortführen oder beenden möchte.

Ende des Experimentes

Zum Ende des Experimentes bekommen Sie noch ein paar Fragen gestellt, bei denen

Sie teilweise Geld gewinnen können (dies ist dann jeweils vor Beantwortung der Fragen

erklärt). Zuletzt geben Sie über ein Formular Ihre Auszahlungsdaten ein, die von der

Universität zur Tätigung der Zahlung benötigt werden.
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Abbildung 2: Ein Beispiel für die ersten zwei Spielrunden

B.2. Treatment Group

Freiwilligkeit des Experimentes

Die Teilnahme an diesem Experiment ist freiwillig. Sie können die Teilnahme jederzeit

ohne Angabe von Gründen abbrechen.

Instruktionen

Bitte lesen Sie die folgenden Instruktionen sorgfältig. Vor dem Experiment bekom-

men Sie einige Kontrollfragen gestellt und Sie können bei korrekter Beantwortung Geld

gewinnen. Konkret werden Ihnen fünf Kontrollfragen gestellt. Hiervon wird nach Ihren

Antworten eine zufällig ausgewählt und wenn Ihre Antwort auf diese Frage beim ersten

Versuch richtig war, bekommen Sie eine zusätzliche Auszahlung von 1,00e.

Im Folgenden werden Sie zufällig in Zweiergruppen eingeteilt und werden mit Ihrem

zugeteilten Spielpartner ein Spiel spielen. In diesem Spiel können Sie Spielpunkte erspie-

len. Auf Basis dieser Spielpunkte wird am Ende Ihre Auszahlung ermittelt, was weiter

unten erläutert wird. Zusätzlich erhalten Sie eine hiervon unabhängige Auszahlung von

4,00e für das Erscheinen und Ihre Teilnahme am Experiment. In dem Spiel werden Sie

zufällig entweder die Rolle von Spieler A oder von Spieler B übernehmen. Das Spiel

wird nun beschrieben und danach anhand eines Beispiels für zwei Spielrunden veran-

schaulicht. Dort sehen Sie auch beispielhaft die Bildschirmanzeigen, die beiden Spielern

jeweils angezeigt werden.

Entscheidungen der Spieler

Das Spiel wird über mehrere Runden gespielt und in jeder Runde hat Spieler A die

Wahl zwischen Option 1 und Option 2 und Spieler B entscheidet in der Folge, ob eine

weitere Runde des Spiels gespielt wird. Es gibt in jeder Runde vier mögliche Fälle, die

alle gleich wahrscheinlich sind und vor jeder neuen Runde zufällig bestimmt werden.
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Auszahlungen der Spieler bei Wahl von
Fälle Option 1 Option 2

1. Fall A: 1 Punkt, B: 1 Punkt A: 0 Punkte, B: 0 Punkte
2. Fall A: 0 Punkte, B: 0 Punkte A: 1 Punkt, B: 1 Punkt
3. Fall A: 1 Punkt, B: 0 Punkte A: 0 Punkte, B: 1 Punkt
4. Fall A: 0 Punkte, B: 1 Punkt A: 1 Punkt, B: 0 Punkte

Abbildung 1: Übersicht über die möglichen Auszahlungen für Spieler A und B

In jedem möglichen Fall erhält also jeder Spieler eine Auszahlung von 1 von genau

einer der beiden Optionen, während die andere Option ihm eine Auszahlung von 0 gibt.

Die Option mit der höheren Auszahlung kann entweder für beide Spieler die gleiche oder

aber eine unterschiedliche sein.

In jeder Spielrunde tritt genau einer der obigen Fälle ein, aber keiner der Spieler

weiß mit Sicherheit, welcher das ist. Spieler A bekommt jedoch immer angezeigt für

welche der Optionen er einen Punkt erhält. Darüber hinaus erhält er einen automatisch

erzeugten Hinweis darüber, welche Option Spieler B einen Punkt einbringen könnte.

Dieser Hinweis ist in der ersten Runde mit einer Wahrscheinlichkeit von 82% korrekt

und mit einer Wahrscheinlichkeit von 18% inkorrekt. Die Wahrscheinlichkeit, mit der

der Hinweis korrekt ist, nennen wir in dem Experiment die Hinweisstärke. Sie wird

immer als Dezimalzahl angegeben. Eine Hinweisstärke von 0,82 entspricht zum Beispiel

einer Wahrscheinlichkeit von 82%, eine Hinweisstärke von 0,84 entspricht 84%, usw.

Nach der Entscheidung von Spieler A werden beide Spieler über ihre daraus resul-

tierenden Auszahlungen informiert. Spieler B erfährt hierbei nur, ob er eine Auszahlung

von 1 oder 0 (Spielpunkten) erhält und nicht, was der Hinweis von Spieler A war oder

welche Auszahlung Spieler A erhalten hat. Spieler A wird hingegen auch über die

Auszahlung von Spieler B informiert. Spieler B kann also keine der Optionen selbst

wählen, sondern erhält seine Auszahlung abhängig von der Wahl von Spieler A. Im An-

schluss daran kann Spieler B entscheiden, ob er das Spiel beenden oder für eine weitere

Runde fortführen möchte.

• Spieler B wählt fortführen:

In diesem Fall wird mit einer Wahrscheinlichkeit von 90% eine weitere Runde des

Spiels gespielt. Falls Spieler B in der aktuellen Runde eine Auszahlung von einem

Spielpunkt erhalten hat, wird in den folgenden Runden der Hinweis, den Spieler A

erhält, verbessert : Die Wahrscheinlichkeit, mit der der Hinweis korrekt ist, erhöht

sich um 2% (die Hinweisstärke erhöht sich also um 0,02). Falls Spieler B in der

aktuellen Runde eine Auszahlung von null Spielpunkten erhalten hat, bleibt die

Hinweisstärke genau wie in der vorherigen Runde.

Mit einer Wahrscheinlichkeit von 10% endet das Spiel trotz der Entscheidung

42



von Spieler B das Spiel fortzuführen (sonst könnte das Spiel theoretisch unendlich

lange dauern). Beide Spieler erhalten ihre bis dahin erspielten Spielpunkte. Beide

Spieler erhalten die Nachricht, dass das Spiel exogen beendet wurde.

• Spieler B wählt beenden:

In diesem Fall bekommt Spieler B zusätzlich 5 Spielpunkte gutgeschrieben, Spieler

A erhält keine weiteren Punkte. Das Spiel ist zu Ende und beide Spieler werden

darüber informiert, dass Spieler B das Spiel beendet hat.

Sofern das Spiel über mehrere Runden fortgeführt wird, verbessert sich der Hinweis

auch in folgenden Runden (sofern Spieler B eine Auszahlung von einem Punkt erhält).

Hierbei erhöht sich die Wahrscheinlichkeit, dass der Hinweis definitiv korrekt ist jeweils

um 2%. Die maximale Wahrscheinlichkeit ist jedoch 90%. Sollte in einer Runde also

diese Wahrscheinlichkeit erreicht sein und Spieler B erhält in dieser Runde nochmals

eine Auszahlung von 1, so bleibt die Wahrscheinlichkeit auch in allen folgenden Runden

bei 90%.

Jede Runde des Spiels kann wie folgt in einem Schaubild veranschaulicht werden:

A beobachtet seine
Auszahlungsoption

und erhält
Hinweis über B’s

Auszahlungsoption

A wählt
Option
1 oder 2

B beobachtet die
eigene Auszahlung,
A beobachtet beide

Auszahlungen

B wählt
fortführen

oder beenden

Neues Spiel mit neuem Spielpartner

Sobald ein Spiel für alle Spieler beendet ist (entweder exogen oder weil alle Spieler B

ihr Spiel beendet haben), werden die Spielpartner neu zugelost. Jeder behält hierbei

jedoch seine Rolle als Spieler A oder Spieler B und bekommt zufällig einen Spieler des

anderen Typs zugelost. Das Spiel wird erneut gestartet. Insgesamt werden 10 Spiele

mit wechselnden Spielpartnern durchgeführt. Am Ende wird zufällig eines der 10 Spiele

ausgewählt und die dort erspielte Punktzahl wird nach Beendigung des Experimentes

(zusammen mit der festen Auszahlung) ausgezahlt. Ein Spielpunkt entspricht hierbei

1,00e.

Beispiel

In dem folgenden Beispiel (siehe Abbildung 1) wählt Spieler A in der ersten Runde Op-

tion 1 (oben links im Bild). Im Folgenden werden beide Spieler darüber informiert, dass

diese Wahl Spieler B eine Auszahlung von 0 einbringt (zu sehen ist nur der Bildschirm

von Spieler B, oben rechts). Spieler A kann so feststellen, dass sein Hinweis über Spieler

B in Runde 1 korrekt war, da der Hinweis Option 2 lautete und Option 1 Spieler B eine
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Auszahlung von 0 einbrachte. Somit hätte Option 2 tatsächlich in einer Auszahlung

von 1 für Spieler B resultiert. Spieler B weiß allerdings weder welchen Hinweis Spieler

A erhalten hat, noch ob Spieler A diesem Hinweis gefolgt ist.

Abbildung 2: Ein Beispiel für die ersten zwei Spielrunden

Im Beispiel entscheidet sich Spieler B für ”Spiel fortführen” und es wird eine zweite

Runde gespielt. In der zweiten Runde ist die Hinweisstärke dann wiederum 0,82, da

Spieler B in der ersten Runde eine Auszahlung von 0 erreicht hat. Nun entscheidet

sich Spieler A für Option 2 (Bild unten links). Diese Wahl führt zu einer Auszahlung

von 1 für Spieler B (siehe Bild unten rechts). Spieler B kann nun wieder entscheiden,

ob er das Spiel fortführen oder beenden möchte und wird darüber informiert, dass die

Hinweisstärke in der nächsten Runde 0,84 wäre. Hätte Spieler B in der zweiten Runde

eine Auszahlung von 0 erhalten, so wäre die Hinweisstärke in der nächsten Runde

weiterhin bei 0,82 geblieben. Die Hinweisstärke erhöht sich immer nur dann, wenn

Spieler B in einer Runde eine Auszahlung von 1 erhält.

Ende des Experimentes

Zum Ende des Experimentes bekommen Sie noch ein paar Fragen gestellt, bei denen

Sie teilweise Geld gewinnen können (dies ist dann jeweils vor Beantwortung der Fragen

erklärt). Zuletzt geben Sie über ein Formular Ihre Auszahlungsdaten ein, die von der

Universität zur Tätigung der Zahlung benötigt werden.
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C. Additional Results and Robustness Checks

In this section, we will provide additional results and robustness checks related to the

experimental results given in Section 6. We will have a further look at advice quality,

welfare distribution and hazard rates in turn.

C.1. Advice Quality
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Figure 7: Robustness Checks for Advice Quality

Figure 7 shows the robustness checks for advice quality. In Figure 7a, we only

considered those experts who gave at most one incorrect answer to the check questions.

We can see that the advice quality in the treatment group is still higher, but the

difference becomes a bit less significant. The same happens when we take out the first

two supergames in each session, where players might still have been learning the game.

This is shown in Figure 7b. Lastly, we looked at advice quality per learning level in

the treatment group. The results can be seen in Figure 7c. It turns out that advice in

the learning levels p0, p1, p2 and p4 is significantly higher than that given in the control

group. However, the average advice quality in learning level p3 is lower than in the

control group. A potential explanation for the low advice quality in this level is the

gambling effect: Experts feel that their signal strength is sufficiently high to generate
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fitting advice on the spot such that they will take their bonus and hope to appease the

consumer in the next period. It is also noteworthy that the advice quality in learning

level p4 is significantly higher than in all other learning levels as well as in the control

group. This effect cannot be explained by a better signal quality, since advice quality

is measured by the share of tradeoff-situations (bonus option = option 2), in which the

adviser decides to give useful advice instead of receiving his bonus. The signal quality

only affects how often this decision will actually translate to the intended payoff of one

to the consumer. A reason for the high advice quality in learning level p4 could be a

selection effect: The majority of advisers who reached learning level p4 in their advice

relationship probably did so because they gave good advice in the past and they might

have an intrinsic motivation to give good advice and/or value long-lasting relationships

a lot. Another explanation could be reciprocity: Advisers reward consumers for their

loyalty over the last rounds by giving better advice.

Overall, we conclude that the difference in advice quality between control group and

treatment group seems to be quite robust.

C.2. Welfare Analysis
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Figure 8: Robustness Checks for Consumer Welfare

The results of the robustness checks for consumer welfare can be seen in Figure
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8. Overall, the observation that consumer welfare does not significantly differ between

control and treatment group is very robust. When we take out the supergames with

less than three rounds (Figure 8a) or the first two supergames of each session (Figure

8c) or those consumers with two or more incorrect answers to check questions (Figure

8b), there is no significant difference in consumer welfare between control and treatment

group. We also had a look at total welfare, the sum of consumer and expert payoffs. As

can be seen in Figure 8d, there is no significant difference between control and treatment

group, either. This also implies that expert payoffs in control and treatment group are

not significantly different from each other.

C.3. Hazard Rates
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Figure 9: Robustness Checks for Hazard Rates

Figure 9 shows the robustness checks we performed for the hazard rates. Our finding

that hazard rates are significantly lower in learning levels p0 and p1 proves to be robust.

Both excluding consumers with two or more incorrect answers to check questions (Figure

9a) and taking out the first two supergames of each session (Figure 9b) leads to a shape

very similar to the one in Figure 4.
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Çetin, G. S., W. Dai, Y. Doröz, W. J. Martin, and B. Sunar (2016). Blind Web Search:

How far are we from a privacy preserving search engine? IACR Cryptology ePrint

Archive 2016, 801.

Chellappa, R. K. and R. G. Sin (2005). Personalization versus Privacy: An Empir-

ical Examination of the Online Consumer’s Dilemma. Information technology and

management 6 (2), 181–202.

Chen, D. L., M. Schonger, and C. Wickens (2016). oTree—An open-source platform

for laboratory, online, and field experiments. Journal of Behavioral and Experimental

Finance 9, 88–97.

Crawford, V. P. and J. Sobel (1982). Strategic Information Transmission. Economet-

rica 50 (6), 1431–1451.

Edelman, B., M. Ostrovsky, and M. Schwarz (2007). Internet Advertising and the

Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords.

American Economic Review 97 (1), 242–259.

Edelman, B. and M. Schwarz (2010). Optimal Auction Design and Equilibrium Selection

in Sponsored Search Auctions. American Economic Review 100 (2), 597–602.

Eliaz, K. and R. Spiegler (2011). A Simple Model of Search Engine Pricing. Economic

Journal 121 (556), 329–339.

Gramb, M. and C. Schottmüller (2022). Anonymous or personal? Repeated personal-

ized advice in the lab. AEA RCT Registry . January 13. doi:10.1257/rct.8682.

48



Greiner, B. (2015). Subject pool recruitment procedures: organizing experiments with

ORSEE. Journal of the Economic Science Association 1 (1), 114–125.

Hillenbrand, A. and S. Hippel (2019). Strategic Inattention in Product Search. MPI

Collective Goods Preprint (2017/21).

Holmström, B. R. (1978). On Incentives and Control in Organizations. Stanford Uni-

versity.

Holmström, B. R. (1982). On the Theory of Delegation. Northwestern University.

Inderst, R. and M. Ottaviani (2009). Misselling through Agents. American Economic

Review 99 (3), 883–908.

Inderst, R. and M. Ottaviani (2012a). Financial Advice. Journal of Economic Litera-

ture 50 (2), 494–512.

Inderst, R. and M. Ottaviani (2012b). How (not) to pay for advice: A framework for

consumer financial protection. Journal of Financial Economics 105 (2), 393–411.

Li, J., N. Matouschek, and M. Powell (2017). Power Dynamics in Organizations. Amer-

ican Economic Journal: Microeconomics 9 (1), 217–41.

Lipnowski, E. and J. Ramos (2020). Repeated delegation. Journal of Economic The-

ory 188, 105040.

Park, I.-U. (2005). Cheap-Talk Referrals of Differentiated Experts in Repeated Rela-

tionships. RAND Journal of Economics 36 (2), 391–411.

Schottmüller, C. (2019). Too good to be truthful: Why competent advisers are fired.

Journal of Economic Theory 181, 333–360.

Sobel, J. (1985). A Theory of Credibility. Review of Economic Studies 52 (4), 557–573.

Sobel, J. (2013). Giving and Receiving Advice. Advances in economics and economet-

rics 1, 305–341.

Spiekermann, S., J. Grossklags, and B. Berendt (2001). E-privacy in 2nd generation

E-commerce: privacy preferences versus actual behavior. In Proceedings of the 3rd

ACM conference on Electronic Commerce, pp. 38–47. ACM.

Tsai, J. Y., S. Egelman, L. Cranor, and A. Acquisti (2011). The Effect of Online Privacy

Information on Purchasing Behavior: An Experimental Study. Information Systems

Research 22 (2), 254–268.

49



Xu, Y., K. Wang, B. Zhang, and Z. Chen (2007). Privacy-enhancing personalized web

search. In Proceedings of the 16th international conference on World Wide Web, pp.

591–600. ACM.

Zimmer, M. (2008). Privacy on Planet Google: Using the Theory of ”Contextual In-

tegrity” to Clarify the Privacy Threats of Google’s Quest for the Perfect Search En-

gine. J. Bus. & Tech. L. 3, 109.

50


