
Supplementary Material

Why Echo Chambers are Useful

Ole Jann

CERGE-EI

Christoph Schottmüller

University of Cologne and TILEC

January 13, 2025

Contents

1 Two specific types of bias distributions 2

1.1 Uniformly distributed biases . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Symmetrically single peaked bias distribution . . . . . . . . . . . . . . . . 5

2 Example: Too much segregation in equilibrium 6

3 Non-credible threats could increase information 7

4 Uncertainty 8

4.1 Main results and intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Detailed analysis and proofs for the model with uncertainty . . . . . . . . 11

4.2.1 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Public information 17

6 Signaling 21

6.1 Binary signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Continuous signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Verification 24

8 States correlated within bias groups 26

9 Alternative signal technologies 27

9.1 Larger signal and state space . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.2 Continuum of signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9.3 Single state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



10 Follower model 39

11 Mediated talk 46

1. Two specific types of bias distributions

To find out how polarized biases need to be so that segregation is optimal and an equi-

librium, we can consider two stylized cases. First, we will consider biases that are evenly

distributed on an interval of the real line. We can think of this case as having “zero polar-

ization”, whereas clustering of biases around certain values exhibits positive polarization.

Second, we consider biases that are tightly clustered around a central value – we could

think of this as “negative polarization”.

1.1. Uniformly distributed biases

We will show the following result:

Result 1. Let bi = (i − 1) ∗ k/(n − 1) for i = 1, . . . , n. Then the welfare optimal room

allocation assigns either all players to one single room or all but one extreme player to

the same room. Assigning all players to the same room is also an equilibrium.

Intuitively, we can start by considering the fully integrated room, in which some people

whose biases are close to the overall average tell the truth, and the rest babble and learn

from the truth-tellers. Since biases are evenly distributed by assumption, there is little

welfare to be gained by moving the bias average around by allocating people to another

room. (This can only work because of integer effects – i.e. because changes in the

average bias have discrete effects on who tells the truth – which is precisely what gives

us the exceptions in the second half of the proposition.) Any room that includes only

part of the players will have a shorter truth-telling interval, which (again, absent integer

effects) means fewer truth-tellers. But if we cannot increase the number of truth-tellers by

segregating into smaller rooms, then the fully integrated room must be welfare-optimal

and also an equilibrium: Every player receives the highest possible number of truthful

messages while the number of players having their own signal in addition to this number

of messages is also maximal. The remainder of this section shows this result formally.

Proposition 9. Let bi = (i− 1) ∗ k/(n− 1) for i = 1, . . . , n. Then one single room with all

players is both welfare optimal and an equilibrium if either

b−
[
k/2− (p− 1/2)

n− 1

n

]
≤ k

2(n− 1)
(1)

or

k(1− 1/n)/2− (p− 1/2)
n− 2

n− 1
> b− k

n− 1
. (2)
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If neither of these two conditions holds, isolating player n in one room and all other

players in one room is welfare optimal. This is only an equilibrium if

α ≥
⌊n−1

n
(2p− 1)/(k/(n− 1))⌋ − 1

n− 2
. (3)

Proof of proposition 9: Theorem 1 states that in the most informative equilib-

rium of the messaging subgame players in room R will tell the truth if and only if

bi ∈
[
b− nR−1

nR
(p− 1

2
), b+ nR−1

nR
(p− 1

2
)
]
. If this interval covers [0, k], then one room leads

to truthtelling by all players and one single room is clearly optimal. In the remainder

of this proof, we therefore assume that this is not the case. The length of the interval[
b− nR−1

nR
(p− 1

2
), b+ nR−1

nR
(p− 1

2
)
]
is nR−1

nR
(2p − 1). The number of players telling the

truth in any room is consequently bounded from above by ⌊nR−1
nR

(2p− 1)/(k/(n− 1))⌋+1

as the players’ biases are equally spaced with distance k/(n − 1) between two consecu-

tive players’ biases. This bound may not be attained by any feasible room due to the

discrete nature of the problem. More specifically, if we take the fully integrated room,

then the number of truthtelling players will be either ⌊n−1
n
(2p − 1)/(k/(n − 1))⌋ + 1 or

⌊n−1
n
(2p− 1)/(k/(n− 1))⌋.

Let t∗ be the maximal number of truthtelling players in any possible room. From the

above, it is clear that t∗ ∈
{
⌊n−1

n
(2p− 1)/(k/(n− 1))⌋+ 1, ⌊n−1

n
(2p− 1)/(k/(n− 1))⌋

}
.

Suppose t∗ is the number of truthtelling players if all players are in the same room. Then

the number of pieces of information generated in this room is t∗n+n−t∗. We will show that

in this case no other room configuration generates more pieces of information: The total

number of pieces of information in r rooms is:
∑

R tRnR+nR−tR =
∑

R tR(nR−1)+nR ≤∑
R t∗(nR − 1) + nR = t∗(n− r) + n ≤ t∗n+ n− t∗. By proposition 1, one big room with

all players is then welfare optimal if this leads to t∗ truthtelling players.

Next consider the situation where one integrated room with all players leads not to

t∗ but only to t∗ − 1 truthtelling players. Suppose that there is some room R∗ with

n − 1 players in which t∗ players are truthtelling. We show that in this case the room

configuration (R∗, {1, . . . , n} \ R∗) is welfare optimal. This will lead to t∗(n − 1) + n −
1 − t∗ + 1 = t∗(n − 2) + n pieces of information. The big integrated room leads to

only (t∗ − 1)n + n − t∗ + 1 = t∗(n − 1) < t∗(n − 1) − t∗ + n pieces of information

and is therefore welfare inferior. Any other room configuration with r rooms leads to∑
R tRnR+nR−tR =

∑
R tR(nR−1)+nR ≤

∑
R t∗(nR−1)+nR = t∗(n−r)+n ≤ t∗(n−2)+n

pieces of information which is also (weakly) less than (R∗, {1, . . . , n} \R∗). Hence, in this

case (R∗, {1, . . . , n} \R∗) is welfare optimal.

Finally, we show that the conditions in the proposition lead to either of the two just

described cases. Note that in the fully integrated room b̄ = k/2. Hence, condition

(1) states that the distance from the lowest player’s bias who tells the truth to the lower

boundary of the truthtelling interval is less than 1/2 the distance between two consecutive
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players’ biases. By symmetry of the truthtelling interval around b̄ and the equal spacing

of biases, this is also true for the distance of the highest bias player telling the truth and

the upper boundary of the truthtelling interval. First, let (1) hold strictly. Then it is clear

that shifting the truthtelling interrval (by changing b̄) cannot lead to more players being

truthtelling. Furthermore, the length of the truthtelling interval is strictly decreasing in

the number of players in the room. Hence, in no other room can there be more truthtelling

players than in the fully integrated room. This holds also if (1) holds with equality as the

length of the truthtelling inequality is strictly decreasing in the number of players in the

room. Consequently, t∗ is achieved by the fully integrated room and the argument two

paragraphs above shows that then the fully integrated room is welfare optimal.

Now consider the case where (1) does not hold. Start from the fully integrated room.

If (1) does not hold, shifting the truthtelling interval by k/(2(n − 1)) down (by – for

now magically – reducing b̄ by this amount), will imply that this interval contains 1

more player than in the fully integrated room. Furthermore, the distance of this lowest

truthtelling player after the shift to the lower boundary of the truthtelling interval will be

less than k/(2(n− 1)) by the assumption that (1) did not hold. Now note that removing

player n from the fully integrated room will reduce b̄ by exactly k/(2(n − 1)) (from k/2

to (k − k/(n − 1))/2). But note that removing this player also implies that nR = n − 1

and therefore the length of the truthtelling interval is reduced. Condition (2) states that

due to the shrinking of the interval when moving from n to n− 1 players the one player

whose truthtelling was gained by shifting the interval down is lost again. Furthermore,

the“shrinking”occurs at the upper as well as the lower boundary to the same extent. This

implies that also at the upper boundary one truthtelling player is lost due to the shrinking

(while the shifting did not lose anyone as (1) was violated by assumption). Consequently,

the room without player n will have one less truthtelling player than the fully integrated

room if (1) is violated and (2) holds. In this case, no room with n−1 (or less) players can

have more truthtelling players than the fully integrated room and therefore t∗ is attained

in the fully integrated room. Consequently, the fully integrated room is by the results

above welfare optimal.

If neither (1) nor (2) holds, then the “shifting” argument above implies that the room

allocation ({1, . . . , n−1}, {n}) leads to one more truthtelling player in R∗ = {1, . . . , n−1}
than in the fully integrated room. Consequently, t∗ is attained in R∗ and ({1, . . . , n −
1}, {n}) is welfare optimal by the results above.1

In terms of equilibrium, it is immediate that no player wants to deviate from the fully

integrated room by isolating himself as self-isolation leads to less information for himself

and no more information for other players. The same argument applies for players in

room R∗ in case (1) and (2) are violated. However, the isolated player might have an

1It should be noted that similar arguments as above, with an upward instead of a downward shift,
lead to the optimality of ({1}, {2, . . . , n}) which will also attain t∗ if (1) and (2) are violated.
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incentive to join R∗: This would reduce the amount of information as only t∗ − 1 instead

of t∗ players would be truthtelling in the resulting fully integrated room reducing the

number of pieces information of all other players in this room from t∗(n− 1) + n− 1− t∗

to (t∗ − 1)(n − 1) + n − t∗. However, the deviating player would gain more information

for himself, i.e. the number of pieces of information he observes is t∗ instead of 1. From

7, it follows that the deviation is profitable if and only if α < (t∗ − 1)/(n− 2). Note that

t∗ = ⌊n−1
n
(2p − 1)/(k/(n − 1))⌋ in the here analyzed case where one integrated room is

not optimal. This gives the condition in the proposition.

1.2. Symmetrically single peaked bias distribution

We now move to symmetrically, single peaked distribution of biases: Assume that biases

are on an equally spaced grid 0, d, 2d, . . . ,Kd for some d > 0 and K ∈ N. The number of

players with bias bi = kd is increasing up toKd/2 and decreasing thereafter. Furthermore,

we assume that the number of players with bias kd equals the number of players with bias

(K − k)d for k = 0, 1, . . . , ⌊K/2⌋.
To state our proposition we need the following notation: Let k be the lowest k such

that kd ≥ Kd/2− (p− 1/2)(n− 1)/n and let k̄ be the highest k such that kd ≤ Kd/2 +

(p−1/2)(n−1)/n. Note that due to the discreteness of the grid and following theorem 1,

the truthtelling interval in a fully integrated room will cover all players with bi ∈ [kd, k̄d].

Proposition 10. With a symmetric, single peaked distribution of biases, one room con-

taining all players is welfare optimal and also an equilibrium if

k̄d− kd+ d > (2p− 1)
n− 2

n− 1
. (4)

Proof of proposition 10: Theorem 1 states that in the most informative equilib-

rium of the messaging subgame players in room R will tell the truth if and only if

bi ∈
[
b− nR−1

nR
(p− 1

2
), b+ nR−1

nR
(p− 1

2
)
]
. If this interval covers [0, Kd], then one room

leads to truthtelling by all players and one single room is clearly optimal. In the remain-

der of this proof, we therefore assume that this is not the case. Note that – holding b̄

fixed – the length of the interval is increasing in nR. If we turn to the case of one fully in-

tegrated room, then the truthtelling interval is
[
Kd/2− n−1

n
(p− 1

2
), Kd/2 + n−1

n
(p− 1

2
)
]

as b̄ = Kd/2. We will first show the result under a condition slightly stronger than (4),

namely under the condition

k̄d− kd+ d > (2p− 1)
n− 1

n
. (5)

Condition (5) states that the length of the truthtelling interval is less than k̄ − k + d.

(Note that the length of the truthtelling interval is weakly larger than k̄d− kd due to the

discrete grid on which biases are distributed.) This implies that the truthtelling interval
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would not cover more grid points if it was moved up or down while keeping its length

constant. As the truthtelling interval is shorter for any other room (because of nR < n)

and the distribution of biases is single-peaked, this implies that there is no room in which

more players are truthtelling than in the fully integrated room.

The same conclusion follows if (4) holds instead of (5): (4) states that the length

of the truthtelling interval in any room different from the fully integrated room (which

therefore contains at most n − 1 players) is less than k̄d − kd + d which again implies

that the truthtelling interval of such a room cannot cover more grid points than the

fully integrated room and by single peakedness it can therefore also not contain more

truthtelling players.

Let t∗ be the maximal number of truthtelling players in any possible room. From the

above, t∗ is attained by the fully integrated room if (4) holds. In this case, the number of

pieces of information generated in the fully integrated room is t∗n+ n− t∗. We will show

that no other room configuration generates more pieces of information: The total number

of pieces of information in r rooms is:
∑

R tRnR + nR − tR =
∑

R tR(nR − 1) + nR ≤∑
R t∗(nR − 1) + nR = t∗(n− r) + n ≤ t∗n+ n− t∗. By proposition 1, one big room with

all players is therefore welfare optimal if (4) holds.

In case a single fully integrated room is welfare maximal it is also an equilibrium:

Unilateral self-isolation would lead to less information for the deviating player and also

– by welfare optimality of the fully integrated room – to less information over all. By 3,

the deviation is therefore unprofitable.

2. Example: Too much segregation in equilibrium

In the case of two bias groups, we have shown that the welfare-optimal equilibrium room

allocation is either the overall welfare-optimum, or has too little segregation compared to

it. If there are three or more bias groups, this is not generally true anymore – now it is

possible that the welfare-optimal equilibrium involves too much segregation compared to

the welfare-optimum. This can occur when a player wants to deviate from the welfare-

optimum to another room where he can learn more and thereby destroys the truth-telling

incentives of people in the room that he is leaving. The following paragraphs provide an

example for such a situation.

Consider a bias configuration in which 13 people have bias b1 = −1000, 10 people

have bias b2 = 0 and 2 people have bias b3 = 500. We can easily see that there exists no

possible room with members of exactly two bias groups in which anyone tells the truth.

Even in rooms that involve all three bias groups, no one with biases b1 and b3 will ever

tell the truth. The only way to get anyone with bias 0 to tell the truth in a mixed room

is to create a room with one person with bias b1, two people with bias b3 and an arbitrary

number of people with bias 0. This leads us to the welfare-optimal room allocation: Room
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1 consists of 12 people with bias b1 and generates 144 pieces of information, and room 2

contains everybody else and generates 133 pieces of information, for a total
∑

ζi = 277.

For low α, this allocation is not an equilibrium: The person with bias b1 in room 2 can

change to room 1 and have 13 pieces of information instead of 11.

Now consider the room allocation where bias groups are fully segregated: This gener-

ates 169+100+4 = 273 pieces of information and is also an equilibrium: No one can learn

anything by switching to another room. Hence, this is the welfare-optimal equilibrium,

while the first allocation we described is welfare-optimal – which means that there is too

much segregation in the welfare-optimal equilibrium. (Note that this example is generic

in the sense that we could find an open ball of bias configurations around this particular

bias configuration in which our conclusions remain valid.)

3. Non-credible threats could increase information

In the paper we select the most informative cheap talk equilibrium in the messaging

stage of the game. If we allow players to commit to play less informative equilibria in

certain rooms, then this threat can be used to affect room choice in a way that increases

the amount of information transmission. We do not consider such threats in the paper

as they seem non-credible to us. As soon as players find themselves in a given room

allocation, every player (even those players in other rooms!) benefit strictly from playing

the most informative messaging equilibrium.

This section, however, shows how one can easily generate examples in which such

threats help to increase the amount of transmitted information. We stick to the case of

two bias groups, i.e. n0 players have bias 0 and nb players have bias b. To simplify further,

let n0 = nb+1. We will focus on cases in which the welfare optimal room allocation is full

segregation while the equilibrium room allocation in case the most informative equilibrium

is played in every room is such that room R1 hosts all players with bias 0 (truthtelling)

as well as 2 players of bias b (babbling) while all other players of bias b are in room R2.
2

Using the conditions from the paper, this scenario will emerge if the following conditions

are met:

1. truthtelling by bias 0 in R1:
2

n0+2
b− n0+1

n0+2

(
p− 1

2

)
≤ 0,

2. babbling by bias 0 if a third bias b player joined R1:
3

n0+3
b− n0+2

n0+3

(
p− 1

2

)
> 0,

3. bias b players prefer R1 (i.e. full segregation is not an equilibrium): b
p−1/2

< n0 and

α < (1 + n0 − nb)/(nb − 1) = 2/(nb − 1).

The equilibrium with 2 deviating (and babbling) bias b players generates (nb − 2)2 +

2 ∗ (n0 + 1) + n2
0 = (nb − 2)2 + 2 ∗ (nb + 2) + (nb + 1)2 = 2n2

b + 9 pieces of information.

2It is straightforward to show that we need at least 2 deviating players in this equilibrium to generate
more information through the threat.
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We will now focus on the following messaging equilibrium: There is one player with

bias 0 who is babbling whenever all players with bias 0 are in the same room. All other

players (and all players in all room allocations in which not all players with bias 0 are in

the same room) will play the most informative messaging equilibrium. With this play in

the messaging phase, full segregation, i.e. all players of bias 0 in room R1 and all players

of bias b in R2, is an equilibrium if

α ≥ (1 + n0 − 1− nb)/(nb − 1) = 1/(nb − 1).

Note that such full information (with the one designated bias 0 player babbling) creates

n2
b + (n0 − 1)2 + n0 = 2n2

b + nb + 1 pieces of information which exceeds 2n2
b + 9 if nb > 8.

That is for parameters satisfying nb > 8, n0 = nb + 1, α ∈ [1/(nb − 1), 2/(nb − 1)) as

well as the three conditions above, the threat of babbling in a certain room configuration

helps to increase information transmission through its effect on room choice. Example

parameters satisfying all conditions are nb = 9, n0 = 10, p = 5/6, b = 3/2, α = 1/5.

4. Uncertainty

4.1. Main results and intuition

Let all biases bi be randomly and independently distributed on R according to distribution

Fi. Each player observes his own bias bi, but only knows the distributions of the biases

of other players. Let bei =
∫∞
−∞ bi dFi be the expected value of bi. This can be thought of

as a generalization of the paper’s main model, in which all biases were always identical

to their expected value. When we talk about “introducing” or “adding” uncertainty in

this context, we think of starting with the model in which all biases are known with

certainty, and replacing each bias with a bias distribution that has the same expected

value. Throughout this section, we will be comparing across distributions that have

the same expected value. The following paragraphs intuitively analyze the model with

uncertainty; the corresponding formal statements and analysis are in section 4.2 below.

To find the messaging equilibria within a room, we need to consider i’s problem of

choosing a messagemi after observing bi and σi, but only knowing Fj for all j ∈ Ri. We can

show that this problem is very similar to knowing all biases with certainty. In particular,

recall that i’s willingness to tell the truth depended only on the distance between bi and

the average of all other bj’s in the model with certainty. This insight applies analogously

to a model in which all biases are unknown: Now i cares only about the difference between

bi and the average of all bej , i.e. the expected values of other people’s bias.

A difference in describing equilibria with uncertainty arises since i may want to tell

the truth for some values of bi and not for others, and the other players are unsure about

bi when interpreting mi. Their belief about how likely i is to tell the truth hence depends

8



on how bi is distributed. For each possible probability with which i tells the truth, there

exists an interval around
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

such that i wants to tell the truth if the realized bi

lies within this interval. Since the distribution of bi is common knowledge, that gives us

the following equilibrium condition: The beliefs of all other players about i’s probability

of truth-telling need to give rise to a truth-telling interval for i around the average of all

bj such that i wants to tell the truth with exactly the probability with which the other

players believe that he tells the truth.

This translates into a slightly generalized version of theorem 1 which, for any dis-

tribution of bi, gives us the highest probability with which i can tell the truth in any

equilibrium. Intuitively, the more concentrated Fi is around
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

, the higher the

probability with which i can tell the truth in equilibrium. Interestingly, only the proba-

bility mass of Fi that is sufficiently close to
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

matters; whether or not bei itself is

close to the average or not is not directly relevant for whether i is able to tell the truth

in equilibrium.

In particular, this means that we can choose any set of expected biases, regardless of

how close they are to each other, and construct bias distributions such that none of the

players ever wants to tell the truth to anyone in any room allocation. This means that for

any bias configuration, uncertainty has the potential to completely destroy all chances of

creating a room in which information is exchanged.

Proposition 11. Take a set of n players with biases {b1, b2, . . . , bn} such that there exists

a room allocation in which some (or all) players tell the truth. Then there exists a set

of probability distributions {F1, F2, . . . , Fn} of biases with expected values {b1, b2, . . . , bn}
such that in any room allocation of the n players, no player will tell the truth in any

equilibrium. (Proof on page 15.)

This is, of course, a very stark result. Uncertainty need not always destroy communi-

cation. It can, in fact, make communication possible where it was previously impossible,

by moving probability mass of bi’s distribution closer to the average of other biases. This

effect, however, is more limited and can never lead to full truth-telling if there is no full

truth-telling in a model with certain biases and identical expected values.

Proposition 12. If bi is such that there exists no equilibrium in room Ri where i tells the

truth, there exists a distribution Fi with expected value bei = bi such that there exists an

equilibrium in Ri where i tells the truth with positive probability. However, there exists no

Fi such that i tells the truth with probability 1 in any equilibrium. (Proof on page 15.)

While uncertainty can make some truth-telling possible where it was not possible with

certainty, large amounts of uncertainty will always destroy any truth-telling and make

all messages arbitrarily uninformative unless they preserve sufficient probability mass in

the neighborhood of
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

. Because of the large space of possible distributions and
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possible orderings on uncertainty, we show this result in two ways. First, we consider any

continuous bias distribution and show that by“stretching” it, any equilibrium will become

arbitrarily uninformative. Then we consider discrete bias distributions with bounded

support, and show that any way of increasing the variance of such a distribution will

likewise eventually erode all informative equilibria. In the following propositions, µl
ji is

j’s belief about θi, given that i has sent the signal ml; the other expressions involving µ

are defined analogously.

Proposition 13. Let F be a continuous distribution function that is continuous at its

expected value bei and symmetric around bei . Let F κ(x) = F (bei + κ(x − bei )), i.e. bi = bei

almost surely for limκ→∞ F κ. For any F and ε > 0, there exists a κ̄ > 0 such that

µh
ji − µl

ji < ε if Fi = F κ and κ ≤ κ̄. (Proof on page 15.)

Proposition 14. Fix the expected bias bei of all players in a given room and a bounded

support for all bias distributions Fi. Assume that there is at least one element in the

support that is smaller than
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

− (2p− 1) and at least one element that is larger

than
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

+ (2p− 1). Then for each ε > 0 there exists some σFi
such that for all

such Fi with Var (bi) ≥ σFi
2, µh

ji − µl
ji ≤ ε. (Proof on page 15.)

bib1 be2 b3 b4 be5b

Interval

Figure 1: An illustration of propositions 12 to 14. (The biases are identical to the one in
figure 1 of the paper except that b2 and b5 are now uncertain.)

Figure 1 illustrates propositions 12 to 14. The bias configuration is identical to the

one in figure 1 on page 12, except that there is some mean-preserving uncertainty about

the biases of players 2 and 5, whose biases are now distributed according to a bell-shaped

distribution function. Under certainty, player 2 was telling the truth, but is now only

telling the truth if his realized b2 falls within the interval (proposition 13). Player 5 was

babbling, but will now sometimes send an informative message if his realized bias is close

enough to b (proposition 12).3

These results already contain statements about room choice with uncertainty: If truth-

telling is greatly reduced or becomes impossible, there is not much to be gained from being

in one room. Of course, truth-telling between people with identical bias distributions is

not necessarily easier – note that proposition 11 contained no assumption that people

3This graphic is meant as an illustration and ignores the fact that, while the interval’s length re-
mains constant, its precise location may shift depending on the exact beliefs of the receiving players in
equilibrium.
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differ in how their biases are distributed. So are the effects of uncertainty simply to make

communication hard in general? Not necessarily. Consider a model where full integration

is welfare-optimal and an equilibrium if biases are known. We can show that for any such

model, uncertainty can cause segregation between groups to become Pareto-superior to

integration, and such segregation may also be an equilibrium of the room choice game.

Proposition 15. Let the number of players be weakly larger than 4 and let bei ∈ {0, b}, with
b ∈

(
0, n−1

n
(2p− 1)

]
. Let the two bias groups be of equal size, i.e. n0 = nb = n/2. Then

in the room-choice game:

• If bi = bei with certainty, the fully integrated room is welfare-optimal and an equilib-

rium.

• If biases are uncertain, we can find distributions Fi that keep all bei constant such

that full segregation between the two bias groups is welfare-optimal. For α ≥ 2
n−2

,

this is also an equilibrium.

(Proof on page 16.)

To illustrate this result, let us return to the example on taxation from the paper’s

introduction, and assume that the world consists of liberals and conservatives. Liberals

generally prefer higher taxes than conservatives, but everybody is aware that the optimal

tax level depends on how bad taxes are for economic growth. If the exact political prefer-

ence of each person is known, an informative exchange is possible even across party lines

as long as preferences are not too different. But now assume that instead, each member

of each political group is either a moderate or an extremist. It is only observable whether

anyone is liberal or conservative, not whether they are extremists or moderates. Both

have equal probability, so that in expectation each person is still an “average” liberal or

conservative.

Consider the problem of a liberal who is unsure whether he is listening to a moderate

conservative or a conservative extremist. He knows that a conservative extremist would

always tell a liberal that taxes are bad for the economy, regardless of what his information

is. Any statement about the damages of taxes has hence become less informative, while

being more likely to be made, than if the liberal was talking to an average conservative.

The same is true for a conservative listening to a liberal. Yet while discussion across

party lines has become less informative, this is not true for discussion within parties: The

possible biases within groups are still close enough so that both moderates and extremists

want to truthfully reveal their knowledge to other members of their party. It is hence

better for liberals to only talk to other liberals and for conservatives to only talk to

conservatives, than for any cross-party discussion to take place – not because of inherent

differences in preferences, but because of uncertainty about who one’s interlocutor is.

11



4.2. Detailed analysis and proofs for the model with uncertainty

4.2.1. Preliminary analysis

Similarly to the derivation of expression (13), we can write

Ui(m
h) = E

const− α
∑

j∈Ri,j ̸=i

(
bj − bi + µh

ji +
∑
k ̸=i

µjk − θi −
∑
k ̸=i

θk

)2
∣∣∣∣∣∣σi


Ui(m

l) = E

const− α
∑

j∈Ri,j ̸=i

(
bj − bi + µl

ji +
∑
k ̸=i

µjk − θi −
∑
k ̸=i

θk

)2
∣∣∣∣∣∣σi

 .

Note that we are interested in the difference of the two expressions. Hence, while all bjs

are now unknown, this uncertainty only matters where bj is multiplied by µh
ji and µl

ji,

respectively. We can hence write

∆Ui(σi) = (Ui(m
h)− Ui(m

l))/α

= 2(µh
ji − µl

ji)(nRi
− 1)

[
−
µh
ji + µl

ji

2
−
∑

j∈Ri,j ̸=i b
e
j

nRi
− 1

+ bi + E [θi|σi]

]
, (6)

which is identical to (13) except that we have substituted bej for bj. i’s problem remains

virtually unchanged, except that he now considers the expected value of biases of other

people within the room.

Now consider i’s messaging strategy. In the following, let

λh = Pr(mi = mh|σi = σh) and

λl = Pr(mi = ml|σi = σl)

i.e. λh and λl are the marginal probabilities with which i truthfully reveals his signal,

averaging over all possible bias types. For example, if bi has two possible values with equal

probability and i only reveals σh truthfully for one of them, then λh = 1
2
. The resulting

beliefs of player j are

µh
ji =

pλh + (1− p)(1− λl)

1 + λh − λl

µl
ji =

p(1− λh) + (1− p)λl

1− λh + λl
.

We can also write the following two terms, which both appear in equation (6):

12



µh
ji − µl

ji =
2pλh + 2pλl − 2p− λh − λl + 1

(λh − λl + 1)(λl − λh + 1)

= (2p− 1)
(λh + λl − 1)

(λh − λl + 1)(λl − λh + 1)
(7)

µh
ji + µl

ji =
2pλh − 2p

(
λh
)2 − 2pλl + 2p

(
λl
)2 − 2

(
λl
)2 − λh + λl + 2λhλl + 1

(λh − λl + 1)(λl − λh + 1)

=
4p
(
λl
)2 − 2

(
λl
)2 − 4pλhλl + 2λhλl + 2pλh − λh − 2pλl + λl − 2p+ 1

(λh − λl + 1)(λl − λh + 1)
+ 2p

= (2p− 1)
2
(
λl
)2 − 2λhλl + λh − λl − 1

(λh − λl + 1)(λl − λh + 1)
+ 2p

= (2p− 1)

( (
λl
)2 − λhλl − λl

(λh − λl + 1)(λl − λh + 1)
+

(
λl
)2 − λhλl + λh − 1

(λh − λl + 1)(λl − λh + 1)

)
+ 2p

= (2p− 1)

(
λl

λh − λl − 1
+

λl − 1

λh − λl + 1

)
+ 2p. (8)

From (7), we can see that the condition µh
ji ≥ µl

ji translates to λh + λl ≥ 1. We can

distinguish two cases:

• λh + λl = 1. Then µh
ji − µl

ji = 0 and i’s messages are completely uninformative.

• λh+λl > 1. We will focus on this case, in which messages by i have some informative

content.

We can intuitively see that if i’s messages are believed to contain some information about

σi, i should never want to misrepresent σh if bi is high compared to the average bias of

other players (and vice versa if bi is low). In fact, we can show the following result:

Lemma 1. Assume that λh + λl > 1. Then i always strictly prefers to truthfully reveal (i)

σh if bi ≥ E
[∑

j∈Ri,j ̸=i bj

nRi
−1

]
and (ii) σl if bi ≤ E

[∑
j∈Ri,j ̸=i bj

nRi
−1

]
.

Proof. Consider case (i) and assume that the opposite was true, i.e. ∆Ui(σ
h) ≤ 0 for some

bi ≥ E
[∑

j∈Ri,j ̸=i bj

nRi
−1

]
. Then, since (µh

ji−µl
ji) > 0 by assumption and bi ≥ E

[∑
j∈Ri,j ̸=i bj

nRi
−1

]
, it

must be that
µh
ji+µl

ji

2
−E [θi|σi] > 0 or

µh
ji+µl

ji

2
−p > 0, which means

(
λl

λh−λl−1
+ λl−1

λh−λl+1

)
>

0. But we know that λh − λl − 1 < 0 and λh − λl +1 > 0 from λh + λl > 1, which implies

that
(

λl

λh−λl−1
+ λl−1

λh−λl+1

)
< 0. We can analogously prove (ii).

Now we can consider which conditions need to be in place for an equilibrium to exist in

which i tells the truth with probabilities λh and λl. To be clear: We are still considering

pure equilibria, since i has a strict preference for lying or telling the truth for any bi

except for non-generic boundary cases. However, given Fi (the distribution of bi), we can

determine how often i’s messages will be truthful once we have established for which bi i
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wants to tell the truth and for which he wants to lie. We can think of λh and λl as the

marginal probabilities of truth-telling by i.

Lemma 2. There exists an equilibrium in which i truthfully reveals σh with marginal prob-

ability λh and truthfully reveals σl with marginal probability λl if and only if

1− Fi

(∑
j∈Ri,j ̸=i b

e
j

nRi
− 1

+

(
p− 1

2

)
·
(

λl

λh − λl − 1
+

λl − 1

λh − λl + 1

))
≤ λh

and

Fi

(∑
j∈Ri,j ̸=i b

e
j

nRi
− 1

+

(
p− 1

2

)(
λh − 1

λh − λl − 1
+

λh

λh − λl + 1

))
≥ λl.

Both inequalities hold with equality if Fi is continuous at the argument.

Proof. From equation 6 we get that ∆Ui(σi) ≥ 0 ⇔

bi −
∑

j∈Ri,j ̸=i b
e
j

nRi
− 1

≥
µh
ji + µl

ji

2
− E [θi|σi] .

Recall that E
[
θi|σi = σh

]
= p and E

[
θi|σi = σl

]
= 1 − p. We can make use of the

expression for µh
ji + µl

ji that we have derived in (8) to get ∆Ui(σ
h) ≥ 0 ⇔

bi −
∑

j∈Ri,j ̸=i b
e
j

nRi
− 1

≥
(
p− 1

2

)
·
(

λl

λh − λl − 1
+

λl − 1

λh − λl + 1

)
and ∆Ui(σ

l) ≤ 0 ⇔

bi −
∑

j∈Ri,j ̸=i b
e
j

nRi
− 1

≤
(
p− 1

2

)(
λh − 1

λh − λl − 1
+

λh

λh − λl + 1

)
.

In an equilibrium, the beliefs of the receivers of mi must be correct on average. In

this case, this means that it must be sufficiently likely for bi to fulfill either of the two

inequalities, which gives us the conditions from the proposition. If Fi is continuous at the

argument, correct beliefs require that the inequalities hold with equality. If it is not, there

could potentially be mixed equilibria in which for the borderline type, i mixes between

different messages and beliefs are correct on average.

Note that that
(

λh−1
λh−λl−1

+ λh

λh−λl+1

)
−
(

λl

λh−λl−1
+ λl−1

λh−λl+1

)
= 2. Lemma 2 consequently

describes conditions on the distribution function F at two points that are 2p − 1 apart.

In particular if Fi is continuous at these two points the conditions state that probability

mass in the interval between these two points has to equal λl+λh− 1. More importantly,

the conditions can be used to show that player i babbles in a given room if Fi does not

have enough probability mass around the average bias of the other players in the room.

To be precise, if Fi has no probability mass in
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

± (2p− 1), then the conditions

14



of lemma 1 imply λl + λh = 1 and therefore uninformative messages.4

4.2.2. Proofs

Proof of proposition 11 on page 9.

Without loss of generality, let b1 and bn be the smallest and largest biases respectively.

We can represent each bias as the expected value of a distribution that only places density

on the values b1− (2p−1) and bn+(2p−1). For this set of distributions {F1, F2, . . . , Fn},
the conditions of lemma 2 imply λh + λl = 1, and hence there exists no equilibrium in

which any of the players tells the truth.

Proof of proposition 12 on page 9.

We can construct a distribution Fi that has positive density on
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

, which means

that the conditions of lemma 2 imply that there exists an equilibrium in which a message

by i is informative.

To achieve full truth-telling (i.e. λh = λl = 1), lemma 2 implies we would have to

be able to construct an Fi that only has density inside the interval
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

±
(
p− 1

2

)
.

However, this would contradict our starting assumption that if bi is b
e
i for sure, there exists

no equilibrium in which i tells the truth.

Proof of proposition 13 on page 10.

By the symmetry of F , all F κ have the same expected value. We can find a κ̄ small

enough so that F κ has less than ε′ > 0 probability mass within
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

± (2p− 1)

for any κ ≤ κ̄. Then it follows from lemma 2 that there exists no equilibrium for which

λl + λh > 1 + ε′. The result follows now from the continuity of (8) and the fact that

µh
ji − µl

ji = 0 if λh + λl = 1.

Proof of proposition 14 on page 10.

Let the lower (upper) bound of the support be bi (b̄i). Note that by assumption bi ≤∑
j∈Ri,j ̸=i b

e
j

nRi
−1

− (2p− 1) and b̄i ≥
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

+(2p− 1) which implies by lemma 1 that player

i sends uninformative messages in equilibrium. Now fix bε =
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

− (2p− 1) and

b̄ε =
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

+ (2p− 1). This implies that µh
ji − µl

ji ≤ ε whenever the probability that

bi ≥ b̄ε plus the probability that bi < bε is more than 1− ε′ for some ε′ > 0 (by lemma 1

4To be precise, both points at which Fi is evaluated in lemma 1 lie in the interior of the interval

[
∑

j∈Ri,j ̸=i b
e
j

nRi
−1 − (2p− 1) ,

∑
j∈Ri,j ̸=i b

e
j

nRi
−1 + (2p− 1) and therefore Fi will be continuous at both points and

equal to the same value if there is no probability mass in this interval. As the conditions in lemma 1 then
hold with equality, they imply λh + λl = 1 which in turn implies µh

ji − µl
ji = 0.
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and the continuity of µ·
ji in λh and λl). Let σFi

2 be defined by

σFi

2 = (1−ε′)

(
b̄i − bei
b̄i − bi

(bi − bei )
2 +

bei − bi
b̄i − bi

(b̄i − bei )
2

)
+ε′

(
b̄ε − bei
b̄ε − bε

(bε − bei )
2 +

bei − bε

b̄ε − bε
(b̄ε − bei )

2

)
.

Any distribution with variance above σFi
has to have more than ε′ probability mass above

b̄ε or below bε as σFi
is the variance of the distribution maximizing variance under the

constraint that only 1− ε′ probability mass is outside the interval [bε, b̄ε]. Consequently,

any distribution with variance above σFi
will lead to µh

ji − µl
ji ≤ ε.

Proof of proposition 15 on page 11.

Fix 0 and a b > 0. Consider the distributions putting probability 1/2 on −(p− 1/2) and

1/2 on p − 1/2 instead of 0 for sure and 1/2 on b − (p − 1/2) and 1/2 on b + (p − 1/2).

Under segregation everyone is (just!) truthtelling. In any room including at least 1 player

with another bias than the own one, a bias 0 (b) player will however lie if his bias is the

lower (higher) element of the support:

Take for example a player with bias b+p−1/2 that got a low signal. Then ∆U(σl) > 0

can be written as b+ p− 1/2−
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

> (µh
ji + µl

ji)/2− (1− p). The right hand side

of this inequality is bounded from above by p − 1/2 because µh
ji ≤ p and µl

ji = 1 − p by

lemma 1 according to which λh = 1. As b−
∑

j∈Ri,j ̸=i b
e
j

nRi
−1

> 0, the claim follows.

To compute welfare under a non-segregated scenario, we need to compute E[(µij−θj)
2].

Take, for example, a player j with biases in {b − p + 1/2, b + p − 1/2}. We showed that

this player always sends the high signal if bi = b + p − 1/2 if at least one player of the

other group is in his room. The most informative messaging strategy of such a player in

such a room is therefore truthtelling when bi = b− p+ 1/2 and sending the high message

otherwise. This implies λh = 1 and λl = 1/2 and therefore µh
ij = (1+p)/3 and µl

ij = 1−p.

In this case,

E[(µij − θj)
2] =

1

2

[
1

2

{
p

(
1 + p

3
− 1

)2

+ (1− p)(−p)2

}
+

1

2

{
p(1− p)2 + (1− p)

(
1 + p

3

)2
}]

+
1

2

[
1

2

(
1 + p

3
− 1

)2

+
1

2

(
1 + p

3

)2
]

=
1

4

[
(1 + p)

p2 − 4p+ 4

9
+ (1− p)p2 + p(1− p)2 + (2− p)

1 + 2p+ p2

9

]
=

1

4

[
2

3
+

4

3
p− 4

3
p2
]
.

Following the derivations of player i’s utility in a room that contains players of both

groups, see the proof of proposition 1, we can write player i’s utility if all players are

in the same fully integrated room – and choose the best possible messaging strategy
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corresponding to λh = 1 (λh = 1/2) and λl = 1/2 (λl = 1) for players with expected bias

bei = b (bei = b) – as

U int
i = −α

∑
j ̸=i

{
(bj − bi)

2
}
− [n+ α(n− 1)n] /4 + (1/4− p(1− p))(1 + α(n− 1))

+
(
1/4− [2/3 + p4/3− p24/3]/4

)
[n− 1 + α

∑
j ̸=i

{n− 1}]

while his expected payoff under full segregation is

U seg
i = −α

∑
j ̸=i

{
(bj − bi)

2
}
− [n+ α(n− 1)n] /4 + (1/4− p(1− p))(n/2 + α(n− 1)n/2).

U seg
i exceeds U int

i if and only if

(1/4− p(1− p))(1 + α(n− 1))(n/2− 1) ≥
(
1/4− [2/3 + p4/3− p24/3]/4

)
[n− 1 + α(n− 1)2]

⇔ (1− 4p+ 4p2))(1 + α(n− 1))(n/2− 1) ≥
(
1/3− p4/3 + p24/3

)
[n− 1 + α(n− 1)2]

⇔ 3(1 + α(n− 1))(n/2− 1) ≥ n− 1 + α(n− 1)2

⇔ 3

2
(1 + α(n− 1))

n− 2

n− 1
≥ 1 + α(n− 1)

⇔ n− 2

n− 1
≥ 2

3

which is true for n ≥ 4. As the payoffs do not differ across players in each of the two

scenarios, welfare is higher under segregation than under integration given that n ≥ 4.

To see that other room configurations cannot improve welfare, start from full segre-

gation. Moving k players from room 1 to room 2 will lead to less information for the

remaining players in room 1. Suppose nevertheless that this move was welfare increasing.

Then players in the new room 2 must have better information than under segregation.

Note that by assumption the most informative strategy players could possibly adopt in

the new room is λh = 1 (λh = 1/2) and λl = 1/2 (λl = 1) for players with expected bias

bei = b (bei = b). Assume that this strategy is an equilibrium in the new room 2 (if it is

not, this step increases the welfare gain over segregation). But then it is clearly optimal

to move the remaining players from room 1 to room 2 as well (if this strategy remains an

equilibrium): This improves information for all players. But this would imply U int
i > U seg

i

which contradicts what we showed above.

5. Public information

Here we add a public information component. Our main interest is in the comparative

statics of the weight of this public information component, i.e. if more information be-

comes publicly available, how will communication be affected?
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We consider in this extension a state of the world θ = τθ0 + (1 − τ)
∑n

i=1 θi; that

is, we add – compared to the main model of the paper – an element θ0 ∈ {0, 1} which

receives a weight τ . As for all other θi, there is also binary a signal σ0. This signal has

accuracy p0 > 1/2, i.e. Pr(σ0 = σh|θ0 = 1) = Pr(σ0 = σl|θ0 = 0), and is observed by all

players. Consequently, all players share the same belief about θ0 which is denoted by µ0.

Everything else is as in the main model of the paper.5

The optimal choice of action is now

a∗i = bi + E[θ] = bi + τµ0 + (1− τ)
n∑

j=1

µij.

Note that the proof of lemma 1 goes through with straighforward adaptations. In

particular,

Ui(mi) = E

const− α
∑

j∈Ri,j ̸=i

(
aj(mi,m−i,Ri

, σj)− bi − τθ0 − (1− τ)
n∑

k=1

θk

)2
∣∣∣∣∣∣σi

 .

which leads to

∆Ui(σi) = (Ui(m
h)− Ui(m

l))/α

= −
∑

j∈Ri,j ̸=i

E
[
(1− τ)2µh

ji

2 − (1− τ)2µl
ji

2

+2(1− τ)(µh
ji − µl

ji)

(
bj − bi + τ(µ0 − θ0) + (1− τ)

∑
k ̸=i

(µjk − θk)− (1− τ)θi

)∣∣∣∣∣σi

]

= −2(1− τ)(µh
ji − µl

ji)
∑

j∈Ri,j ̸=i

[
(1− τ)

µh
ji + µl

ji

2
+ bj − bi − (1− τ)E [θi|σi]

]

= 2(1− τ)(µh
ji − µl

ji)(nRi
− 1)

[
−(1− τ)

µh
ji + µl

ji

2
−
∑

j∈Ri,j ̸=i bj

nRi
− 1

+ bi + (1− τ)E [θi|σi]

]
.

Using this expression instead of (13) in the paper the proof of lemma 1 applies and we

can concentrate on pure strategy equilibria.

A result similar to theorem 1 in the paper now follows immediately from the expression

above:

5One way to interpret the weights is the following: Suppose there is a continuum of θ̃ of unit length,
say [0, 1]. Each θ̃ ∈ [0, 1] is either 0 or 1 and agents try to match the average θ̃ (plus their bias) with
their action. For a set Θ0 ⊂ [0, 1] of measure τ , a public signal is available (there could be several public
signals which are then aggregated; the only thing that matters is that everyone has the same expectation
about the value of the average θ̃ in Θ0). Each player i has a private signal about the average value of the
θ̃ ∈ Θi where Θi has measure (1−τ)/n and we assume that all Θi are pairwise disjoint. The comparative
static with respect to τ answers then the question: What happens if information/signals that used to be
privately held by some expert are now publicly available?
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Theorem 3. Let b =
∑

k∈R bk
nR

be the mean bias of players in room R. In the most informa-

tive equilibrium in this room, a player i tells the truth if and only if

bi ∈
[
b− nR − 1

nR

(p− 1

2
)(1− τ), b+

nR − 1

nR

(p− 1

2
)(1− τ)

]
and babbles otherwise.

Proof. Consider the difference between lying and truth-telling for player i, i.e. ∆Ui

as derived above. For every non-babbling player µh
ji = p and µl

ji = 1 − p (as we can

concentrate on pure strategy equilibria) which implies that the necessary equilibrium

condition ∆Ui(σ
h) ≥ 0 simplifies to

bi −
1

nR − 1

∑
j∈Ri,j ̸=i

bj ≥ (
1

2
− p)(1− τ)

nR

nR − 1
bi −

1

nR − 1

∑
k∈Ri

bk ≥ (
1

2
− p)(1− τ)

bi ≥ b− nR − 1

nR

(
p− 1

2

)
(1− τ).

If this inequality does not hold, player i will not use the truthful strategy in the most

informative equilibrium and therefore he will babble in the most informative equilibrium.

We can analogously solve for ∆Ui(σ
l) ≤ 0 and get the interval in the theorem.

Theorem 3 implies that a higher weight on public information reduces the length of

the truthtelling interval. That is, public information crowds out communicated private

information in a given room. This implies that also under the welfare optimal room

allocation less private information will be communicated for higher τ . 6

Proposition 16. Let τh > τ l. In the welfare optimal room allocation the total amount of

communicated information is (weakly) less under τh than under τ l

Proof. Take the welfare optimal room allocation under τh. Using the same room

allocation under τ l will create at least as much information as under τh by theorem

3. (Adapting the room allocation may increase the number of communicated pieces of

information further.)

6Note that welfare – for a given τ – is, as in the paper, proportional to the number of communicated
pieces of information. The derivation goes through with the obvious adaptations leading to

W = −α

n∑
i=1

∑
j ̸=i

{(bj − bi)
2} − 1

4
(1− τ)2n2 [1 + α(n− 1)]

+(1− τ)2(p− 1

2
)2(1 + α(n− 1))

∑
i

ζi − n(1 + α(n− 1))p0(1− p0)τ
2.
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Note, however, that welfare is not necessarily decreasing in τ . The positive effect of

more public information counteracts the negative effect of less private information. The

overall effect is generally ambiguous.7

To think about segregation, let us focus on the binary bias case, i.e. bi ∈ {0, b} for

i = 1, . . . n. Recall that in this setting the welfare optimal room allocation has to fall into

one of the following four categories, see section B:

1. full integration (either with everyone truthtelling or only the majority)

2. full segregation

3. a mixed room in which only majority players are truthtelling and one room with

some minority players

4. a mixed room in which everyone is truthtelling and an extra room with some ma-

jority players.

The detrimental effect of higher τ on communication, now immediately implies that

an increase in τ leads to more segregation in one of the following ways: First, full segre-

gation might become optimal for higher τ (as truthful communication in a mixed or fully

integrated room is possible to a lesser degree). Second, less minority players can remain in

a mixed bias room in which only majority players are truthtelling (as otherwise majority

players babble). Third, less majority players can remain in a mixed room in which all

players are truthtelling (as otherwise minority players lose their incentive to be truthful).

The main intuition behind these results is that more public information implies less

influence of i’s message on j’s decision because i holds less relevant information privately.

With less influence lying is less costly as j will “overshoot” less (when communicating a

high message instead of a low message). This intuition also suggests that for sufficiently

high τ communication between players of different biases is impossible and therefore

segregation by bias is welfare optimal and an equilibrium. The following result states this

formally for generic configurations of biases B (not necessarily binary). Assume that B is

generic in the sense that player i’s bias is not the average of other players’ biases (whose

biases are distinct from bi).
8

Theorem 4. For generic B, there exists a τ̄ < 1, such that full segregation based on biases

is both welfare optimal and an equilibrium if τ ≥ τ̄ .

7To construct an example where welfare is locally decreasing in τ it is enough to choose parameter
values such that truthtelling in a fully integrated room is just possible, i.e. some player is indifferent
between truthtelling and not. Marginally increasing τ in this situation will discretely lower the

∑
i ζi in

the welfare function while affecting all other terms continuously. Hence, a slightly higher τ will decrease
welfare.

8More precisely, the assumption is that bi ̸=
∑

bj∈B\{bi}
ñbj∑
k ñbk

∗ bj for any ñbj ∈ {0, 1, . . . , nbj} where

nbj is the number of players with bias bj .
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Proof. Theorem 3 together with our genericity assumption implies that for a given

room in which at least two players differ in their bias there is a τ̄R < 1 such that babbling

is the unique equilibrium of the messaging game in this room if τ ≥ τ̄R. By the finiteness

of the set of players, the number of possible room configurations is finite and therefore

maxR τ̄R exists and is strictly less than 1. Take τ̄ = maxR τ̄R. Then babbling is the

unique equilibrium of all non-segregated rooms and it is clear that segregation maximizes

the number of communicated pieces of information and therefore welfare. Also no player

wants to deviate from a segregated room to another room as this would lead to babbling

by all players in the room he deviates to (and also deprives the players of the segregated

room of his truthful message).

6. Signaling

6.1. Binary signal

This section sexplores a setting where players in a given room have an additional option:

they can not only send a cheap talk message but also send a costly signal. The costly

signal could be to search for a link to some document supporting the stated opinion or

to spend some time to carefully state the argument on may want to make. The message

space is therefore {ml,mh, m̄l, m̄h} where ml and mh are costless cheap talk messages as

before and the messages m̄h and m̄l are costly messages. Sending such a costly message

deducts c > 0 from the sending player’s payoff.

For now, take the room allocation as given and consider the choice of messages. The-

orem 1 implies that players with bi ∈ [b̄− (p− 1/2)(nR − 1)/nr, b̄+ (p− 1/2)(nR − 1)/nR]

can communicate truthfully through costless cheap talk. Hence, the possibility of send-

ing costly messages is irrelevant for them in the most informative equilibrium. We will

try to construct an equilibrium in which some players with bi outside this interval are

able to communicate their information through a costly message. For concreteness, let

bi > b̄ + (p − 1/2)(nR − 1)/nR in the following. Now consider the following strategy of i

and beliefs of −i. Player i sends message m̄h if σi = σh and message ml otherwise. The

beliefs of player j ∈ R, j ̸= i are µh
ji = µl

ji = µl̄
ji = 1 − p and µh̄

ji = p. In words, player

j beliefs that i received a low signal unless i sends the costly high message m̄h. These

beliefs are consistent with Bayes’ rule given i’s strategy and it remains to check whether

i’s strategy is optimal given these beliefs. First, consider σi = σh. Equation 13 in the

proof of lemma 1 implies that i prefers sending the costly message m̄h to sending a cheap
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talk message if and only if

2α(2p− 1)(nR − 1)

[
−1

2
−
∑

j∈R,j ̸=i bj

nR − 1
+ bi + p

]
≥ c

⇔ bi ≥
c

2α(2p− 1)(nR − 1)
−
(
p− 1

2

)
+

∑
j∈R,j ̸=i bj

nR − 1

⇔ bi ≥ b̄− nR − 1

nR

(
p− 1

2

)
+

c

2α(2p− 1)nR

.

Hence, i’s strategy is only optimal if bi is sufficiently high (relative to c). The reason

is that players with higher bi suffer, due to the concavity of the utility function, more

from other players taking a too low action. Hence, they are willing to pay more, i.e.

tolerate a higher c, for increasing the beliefs and therefore the actions of the other players

in the room. Note that bi > b̄ + (p − 1/2)(nR − 1)/nR implies the condition above if

c ≤ 2α(2p− 1)2(nR − 1).

Second, consider σi = σl. Equation 13 in the proof of lemma 1 implies that i prefers

sending a cheap talk message to sending the costly message m̄h if and only if

2α (2p− 1) (nR − 1)

[
1

2
− p+ bi −

∑
j∈R,j ̸=i bj

nR − 1

]
≤ c

⇔ bi ≤
c

2α(2p− 1)(nR − 1)
+

(
p− 1

2

)
+

∑
j∈R,j ̸=i bj

nR − 1

⇔ bi ≤ b̄+
nR − 1

nR

(
p− 1

2

)
+

c

2α(2p− 1)nR

.

This condition is satisfied if bi is not too high. The reason why players with very high

bi are unable to signal with costly messages is that they would happily pay the cost c in

order to induce a high belief even if their signal is low. If bi is lower, however, players

are only willing to do so if their signal is high where a low action (induced by low beliefs

resulting from cheap talk) would hurt the player more compared to the situation where

his signal is low.

This implies that the above stated strategy and beliefs constitutes and equilibrium of

the messaging game if bi ∈ [b̄− (p−1/2)(nR−1)/nR+c/(2αnR(2p−1), b̄+(p−1/2)/nR−
1)/nR + c/(2αnR(2p− 1)].

An analogous argument yields that it is an equilibrium for bi ∈ [b̄ − (p − 1/2)(nR −
1)/nR− c/(2αnR(2p− 1), b̄+(p− 1/2)(nR− 1)/nR− c/(2αnR(2p− 1)] to use the strategy

of sending message m̄l if σi = σl and message mh if σi = σh together with beliefs µh
ji =

µl
ji = µh̄

ji = p and µl̄
ji = 1− p.

In conclusion, we have to distinguish two cases. First, c ≤ 2α(2p− 1)2(nR− 1). Then,

there is an equilibrium in which players with bias very close to b̄ will engage in truthful

cheap talk, players with bias moderately close to b̄ will truthfully communicate using
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costly messages for signals in the direction of bi − b̄, and finally players with bi far away

from b̄ will babble.

Second, c > 2α(2p− 1)2(nR− 1). In this case, there is an equilibrium in which players

with bias very close to b̄ will engage in truthful cheap talk, players with bi somewhat

further away from b̄ or very far away from bi will babble, but there are some biases in

between at which players engage in meaningful communication via costly signaling.

Above we specified certain beliefs and strategies and checked when these strategies

and beliefs consitute an equilibrium of the messaging game. One might wonder whether

other equilibria with signaling are possible. This is indeed the case, however, none of

these equilibria generates more information than the one we constructed (while the usual

babbling logic implies that there are many less informative equilibria). To see this note

a few peculiarities of the equilibrium above: First, we chose the most extreme beliefs, p

and 1 − p, possible in order to maximizes the incentives to engange in costly signaling.

Second, we let players byu the signal only if σi is in line with their bias relative to b̄. Put

differenltly, a player with bi > b̄ will buy the costly signal only if σi = σh. Due to the

concavity of the utility function this is the σi value for which i has the highest willingness

to pay for increasing the other players’ beliefs. Any other equilibrium will give lower

incentives to engage in signaling and will therefore reduce the range of bi for which costly

signaling is optimal.

In terms of welfare inducing a babbling player to signal information increases the

number of pieces of information by nRi
− 1. Consequently, welfare increases by (p −

1/2)2(1 + α(n − 1))(nRi
− 1). The costs are c. Welfare increases therefore by signaling

if c < (p − 1/2)2(1 + α(n − 1))(nRi
− 1) = (2p − 1)2(1 + α(n − 1))(nRi

− 1)/4 (see the

expression for welfare in the proof of proposition 1). This implies that the most informative

equilibrium is no longer necessarily the welfare maximal equilibrium because information

through signaling comes at a cost and a player’s trade off between informing other players

and incurring the cost c differs from the trade off a welfare maximizing planner faces. Note

that welfare maximizing and most informative equilibrium coincide if c is either very low or

very high and only differ in an intermediate range. As a consequence, theorem 3 still holds

in this setup (the proof goes through with minor adaptations): in sufficiently polarized

societies full segregation is welfare optimal and in sufficiently homogenous societies full

integration is optimal.

6.2. Continuous signal

This subsection adapts the previous one by allowing for a continuous signal. That is,

the sender can choose how much effort he wants to put into drafting the message. We

equate this effort with its costs c which are observable by the receiver. The sender can

choose any level of c in some interval [0, c̄]. Following the signaling literature, we focus

on the least cost separating equilibrium. “Separating” refers in our setup to informative
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communication. In our empirical application effort can be interpreted as formulating the

message well or searching for evidence in the form of links.

The message space in this variation consists of a family of two messages {ml(c),mh(c)}
indexed by the effort cost. Cheap talk messages occur for c = 0. Theorem 1 implies that

players with bi ∈ [b̄− (p− 1/2)(nR − 1)/nr, b̄ + (p− 1/2)(nR − 1)/nR] can communicate

truthfully through costless cheap talk and therefore the least cost separating strategy for

them is truthful cheap talk.

For players with bi ∈ (b̄+(p−1/2)(nR−1)/nR, b̄+(p−1/2)(nR−1)/nR+ c̄/(2αnR(2p−
1)], there exists a cbi ∈ (0, c̄] such that

bi = b̄+ (p− 1/2)
nR − 1

nR

+
cbi

2αnR(2p− 1)

⇔ cbi = 2α (2p− 1) (nR − 1)

[
1

2
− p+ bi −

∑
j∈R,j ̸=i bj

nR − 1

]
.

By the arguments in the previous subsection, cbi is the lowest cost level at which player i

can credibly signal. Analogously, for players with bi ∈ (b̄− (p− 1/2)(nR − 1)/nR, b̄− (p−
1/2)(nR − 1)/nR − c̄/(2αnR(2p− 1)], cbi ∈ (0, c̄] equals

bi = b̄− (p− 1/2)
nR − 1

nR

− cbi
2αnR(2p− 1)

⇔ cbi = 2α (2p− 1) (nR − 1)

[
1

2
− p− bi +

∑
j∈R,j ̸=i bj

nR − 1

]
.

Players with |bi − b̄| > (p − 1/2)(nR − 1)/nR + c̄/(2αnR(2p − 1) no credible signaling is

possible (see the previous subsection).

In conclusion, the model implies that players with bi close to the average will commu-

nicate by cheap talk, players with bi intermediately away from b̄ will signal and extremists

will babble. The signaling effort is increasing in |bi − b̄| up to some point and drops to

zero afterwards.

7. Verification

This sections extends the model by allowing players to communicate their signal verifiably

at a cost c > 0. In other words, players have the choice to either send a costelss cheap

talk message or to verifiably communicate their true signal at cost c to all players in their

room. Players in other rooms receive neither cheap talk nor verifiable messages.

Let the room allocation be given. Theorem 1 implies that players with bi ∈ [b̄− (p−
1/2)(nR−1)/nr, b̄+(p−1/2)(nR−1)/nR] can communicate truthfully through cheap talk

and therefore verification is unnecessary for them. We will therefore concentrat on players

with bias bi outside this interval. Let, for concreteness, bi > b̄ + (p − 1/2)(nR − 1)/nR.
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We now try to construct an equilibrium in which i uses verification in order to credibly

transmit information. By bi > b̄ + (p − 1/2)(nr − 1)/nR, player i has greater incentives

to verify a high signal than a low signal. To maximize informativeness, it is therefore

optimal to choose the belief of the other players in case i sends a cheap talk message to

be µnv
ij = 1− p. That is, player j believes with probability 1 that i received the low signal

whenever i sends a cheap talk message. The fully informative equilibrium that we try

to establish is then that i verifies his signal whenever it is high and sends a cheap talk

message when his signal is low. Given the belief µji, this is informationally equivalent to

truthful communication. It is obvious that, given µji, i will not verify a low signal but

it needs to be checked whether verifying a high signal is optimal. Using equation 13 in

the proof of lemma 1 and given µji, the utility of verifying minus the utility of sending a

cheap talk message given σi = σh is greater than c if and only if

2α(2p− 1)(nRi
− 1)

[
−1

2
−
∑

j∈Ri,j ̸=i bj

nRi
− 1

+ bi + p

]
≥ c

⇔ bi ≥
c

2α(2p− 1)(nRi
− 1)

−
(
p− 1

2

)
+

∑
j∈Ri,j ̸=i bj

nRi
− 1

.

This means that bi has to be large enough relative to c to make verification worthwhile.

Clearly, verification is not optimal if c is excessively large. The option of sending a cheap

talk message inducing belief µji = 1− p is less attractive for players with higher bi due to

the concavity of the quadratic loss function. Consequently, players with a higher bi are

willing to tolerate higher costs of verification.

If bi is below the threshold above, then there is no equilibrium in which i verifies his

signal. By choosing µji = 1 − p and having verification only when the signal is high, we

maximized the incnetives of i to verify. Hence, i will never verify if he finds verification

suboptimal above. The following result summarizes the derivation above

Lemma 4. The most informative equilibrium in room R consists of the following strategies:

• truthful cheap talk if bi ∈ [b̄− (p− 1/2)(nr − 1)/nr, b̄+ (p− 1/2)(nr − 1)/nr]

• verifying σh and cheap talk in case of σl if bi > b̄ + (p − 1/2)(nR − 1)/nr and

bi ≥ c
2α(2p−1)(nR−1)

− p+ 1
2
+

∑
j∈R,j ̸=i bj

nR−1

• verifying σl and cheap talk in case of σh if bi < b̄ − (p − 1/2)(nR − 1)/nr and

bi ≤ − c
2α(2p−1)(nR−1)

+ p− 1
2
−

∑
j∈R,j ̸=i bj

nR−1

• babbling else.

Note that for c sufficiently small no player will babble. As we considered only players

that could not truthfully communicate with cheap talk, the condition

c ≤ 2α(2p− 1)2(nR − 1)
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is sufficient for ensuring that no player babbles. If this condition is violated, the structure

is that “centrists” (those with bi ∈ [b̄ − (p − 1/2)(nR − 1)/nr, b̄ + (p − 1/2)(nR − 1)/nr])

communicate truthfully through cheap talk, “moderate extremists” babble and “strong

extremists” verify.

In terms of welfare inducing a babbling player to verify information increases the

number of pieces of information by nRi
− 1. Consequently, welfare increases by (p −

1/2)2(1+α(n−1))(nRi
−1). The costs are c. Consequently, welfare increases by verification

if c < (p − 1/2)2(1 + α(n − 1))(nRi
− 1) = (2p − 1)2(1 + α(n − 1))(nRi

− 1)/4 (see the

expression for welfare in the proof of proposition 1). This implies that the most informative

equilibrium is no longer necessarily the welfare maximal equilibrium because information

through verification comes at a cost.9

The implications of verification for room allocation is that bigger rooms can be optimal.

Clearly, any room allocation will produce at least as much information with verification as

without. Since players that were babbling under pure cheap talk may now communicate

information by means of verification, it can make sense to have people with a larger spread

of biases in one room.

8. States correlated within bias groups

This section considers a variation of the model in which players with a similar bias have

similar information. This feature implies that communication across bias groups is even

more desirable from a welfare perspective. However, we will show that for the same

reasons as in the paper such communication is infeasible in equilibrium if bias differences

are large.

We will focus on a model setup with two bias groups, i.e. B = {0, b}. Without loss of

generality let players i = 1, 2, . . . , n0 have bias bi = 0 and players i = n0 + 1, . . . , n0 + nb

have bias bi = b. We will introduce similarity of information by assuming that θi and θj

are positively correlated if either i, j ∈ {1, . . . , n0} or i, j ∈ {n0+1, . . . , n0+nb}. However,
we maintain the assumptions that (i) θi and θj are uncorrelated if i ∈ {1, . . . , n0} and

j ∈ {n0+1, . . . , n0+nb}, (ii) signal σi is noisy and independent of σj and θj conditional on

θi, (iii) that θi ∈ {0, 1} and the marginals are such that E[θi] = 1/2 (this latter assumption

is for covenience of notation only). We will not be more specific about the correlation but

9In this context, it is interesting to ask when a player can be prevented from verifying his signal. Take
again bi >, b̄+(p−1/2)(nR−1)/nr for concreteness. Then babbling is preferred to verifying a high signal
if

2α(p− 1/2)(nR − 1)

[
−p+ 1/2

2
−
∑

j∈R,j ̸=i bj

nR − 1
+ bi + p

]
≤ c

which is equivalent to

bi ≤
c

2α(p− 1/2)(nR − 1)
− 1

2

(
p− 1

2

)
+

∑
j∈R,j ̸=i bj

nR − 1
.
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want to point out the two extreme cases: First, perfect correlation within bias groups.

In this case, all players with the same bias receive effectively information about the same

underlying variable. On the other, complete independence which is the case we analyze

in the paper.

Given the flexible formulation, it is unsurprising that a closed form solution no longer

exists. However, we will be able to show a result similar to the one in the main text in this

setup. In a given room including players of both bias groups essentially no information

transmission is possible if b if sufficiently large. Eventually, we conclude this section with

some comments on a behavioral phenomenon namely correlation neglect, i.e. we discuss

how our results change if players are not taking the correlation of states into account.

The following proposition states that the amount of information transmitted in a given

room with players of both biases is less than an arbitrary ε > 0 if b is large enough.10

Proposition 17. Let R be a room containing at least one player with bias 0 and at least one

player with bias b. For every ε > 0, there exists a bε such that Em−i,σj
[µj(h)−µj(l)|σi] < ε

for every player i ∈ R in every equilibrium of the communication stage.

Proof of proposition 17: Clearly, it is still optimal to choose action ai = bi +

E[θ|σi,mRi
] where mRi

are the messages observed by player i.

For concreteness take a player i with bias bi = 0 and compare the difference in ex-

pected utility of this player when sending message h and message l (we neglect that the

expectation is conditional on σi to avoid cluttering of notation):

∆Ui = α
∑

j ̸=i, j∈Ri

E
[
aj(l)

2 − aj(h)
2 − 2θ(aj(l)− aj(h))

]
= α

∑
j ̸=i, j∈Ri

E
[
µj(l)

2 − µj(h)
2 + 2bj(µj(l)− µj(h))− 2θ(µj(l)− µj(h))

]
= −2α

∑
j ̸=i, j∈Ri

E
[
(µj(h)− µj(l))

(
µj(h) + µj(l)

2
− θ + bj

)]
.

As −n0 − nb ≤ (µj(h) + µj(l))/2− θ ≤ n0 + nb, choosing bε = (n0 + nb) + (n0 + nb)
2/ε is

sufficient for ∆Ui < 0 regardless of σi.

9. Alternative signal technologies

In this section, we consider three variations of the model in the paper. The first is

a straightforward extensions in which we allow for more signals than just the binary

signal structure considered in the paper. (We can also allow for more states but this is

10We denote here the action of player j when i sends message l by aj(l). This action depends also on
σj and messages of other players but we suppress this dependence in the interest of readability. Similarly
µj(l) is j’s belief about θ if i sends message l which again depends also on σj and other players’ messages.
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relatively immaterial in our setting.) The second variation considers goes a bit further by

considering a continuum of signals. The third changes the signal structure such that no

longer each player receives a signal about “his state” θi as in the main text but instead all

players receive a noisy signal about the same one-dimensional state θ. For all variations

we show that our main result that integration is optimal and an equilibrium if there

is little polarization while segregation is optimal and an equilibrium if there is a lot of

polarization continue to hold. The main shortcoming of the first and third variation

is that for intermediate values of polarization it is no longer possible to determine the

most informative equilibrium of the messaging game as we can no longer rule out that

this equilibrium involves mixed strategies. The second variation allows only a closed form

solution of the most informative messaging equilibrium for particular distributions, e.g.the

uniform distribution. This makes each variation less tractable than the model of the main

paper.

9.1. Larger signal and state space

Now allow for an arbitrary finite number of states, biases and signals. We keep the

assumption that states and signals of different players are independent and that player

i receives a signal that is partially informative about state θi (but independent about

all other states). We also keep the utility function, i.e. the additive structure. The

message space equals the signal space and we assume that lower signals lead to a lower

expected value of θi. For notational simplicity let the signal be the posterior it leads to,

i.e. σi = E[θi|σi].

Following similar steps as in the main text, we can derive the expected utility difference

between sending two messages labeled as high (h) and low (l). Let µh
ij denote the expected

value that j assigns to θi upon receiving message h (given some equilibrium messaging

strategy by i). The expected utility difference can then, similarly to above, be derived as

∆Ui(σi) =
∑

j∈Ri,j ̸=i

(µl
ji)

2 − (µh
ji)

2 + 2(µl
ji − µh

ji)(bj − bi − E[θi|σi])

=
∑

j∈Ri,j ̸=i

(
µl
ji − µh

ji

) [(
µl
ji + µh

ji

)
+ 2(bj − bi − σi)

]
= −2(nRi

− 1)
(
µh
ji − µl

ji

) [µl
ji + µh

ji

2
+

∑
k∈Ri,k ̸=i

{
bk

nRi
− 1

}
− bi − σi

]

This expression implies that a truthtelling equilibrium exists if and only if for every player

i and every σl
i < σh

i

σl
i ≤

σl
i + σh

i

2
+

∑
k∈Ri,k ̸=i

{
bk

nRi
− 1

}
− bi ≤ σh

i
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⇔

∣∣∣∣∣ ∑
k∈Ri,k ̸=i

{
bk

nRi
− 1

}
− bi

∣∣∣∣∣ ≤ σh − σl

2
.

If we assume that all players have the same signal space, this condition is tight-

est for the player whose bias bi is furthest away from the other players’ average bias,∑
j∈Ri,j ̸=i bj/(nRi

− 1), and for the two signals that are closest together.

It is immediate from the expression above that (i) truthtelling is impossible if bias

differences are too high, (ii) adding moderates can establish truthtelling as it can move

the average of the other players closer to each player’s bias (e.g. consider a room with 2

people with differing biases, then adding a player with the average bias can only help).

To state this formally, consider first the expected payoff of player i when choosing room

Ri and expecting a given (e.g. equilibrium) room allocation:

− E

 ∑
j∈Rtruth

i ,j ̸=i

(µij − θj) +
∑

j ̸∈Ri,j∈Rbab
i

(µ̄j − θj)

2

+ α
∑

j∈Ri,j ̸=i

bj − bi +
∑

k∈Rtruth
i ∪{j}

(µjk − θk) +
∑

k ̸∈Ri,k∈Rbab
i \{j}

(µ̄k − θk)

2

+α
∑
j ̸∈Ri

bj − bi +
∑

k∈Rtruth
j ∪{j}

(µjk − θk) +
∑

k ̸∈Ri,k∈Rbab
j \{j}

(µ̄k − θk)

2
where we denote E[θj] as µ̄j, the set of players babbling in room Rj in the messaging

equilibrium of the given room allocation as Rbab
j and the set of players sending truthful

messages in room Rj in the messaging equilibrium of the given room allocation as Rtruth
j .

Note that most of the terms drop out in the expression above as signals are assumed

to be independent and therefore E[µij − θj] = 0 and also E[(µij − θj)(µik − θk)] = 0.

Consequently, the expression above can be rewritten as

−
∑

j∈Rtruth
i ,j ̸=i

E
[
(µij − θj)

2
]
−

∑
j ̸∈Ri,j∈Rbab

i

E
[
(µ̄j − θj)

2
]

−α
∑

j∈Ri,j ̸=i

(bj−bi)
2−α

∑
j∈Ri,j ̸=i

∑
k∈Rtruth

i ∪{j}

E
[
(µjk − θk)

2
]
−α

∑
j∈Ri,j ̸=i

∑
k ̸∈Ri,k∈Rbab

i \{j}

E
[
(µ̄k − θk)

2
]

−α
∑
j ̸∈Ri

(bj − bi)
2−α

∑
j ̸∈Ri

∑
k∈Rtruth

j ∪{j}

E
[
(µjk − θk)

2
]
−α

∑
j ̸∈Ri

∑
k ̸∈Ri,k∈Rbab

j \{j}

E
[
(µ̄k − θk)

2
]

As we cannot rule out mixed strategies, this expression will not simplify as neatly as

in the main text. However, we can already see from here that a player’s payoff is higher if

another player is truthtelling than when he is babbling or mixing. This observation will

be enough for our purposes.
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To state our results we first introduce some notation. Let σ = min{|σj − σk| : j ̸=
k, σj, σk ∈ Σ} and σ̄ = max{|σj − σk| : j ̸= k, σj, σk ∈ Σ} and furthermore, b̄ =

maxi{|nbi −
∑

j bj|}. We will denote by Bη the set of biases scaled by η; that is, it

contains all the elements ηbi. We will use this to talk about more spread out biases. If

the set of biases is Bη with η > 1, then biases are more spread out.

Proposition 18. If σ ≥ 2b̄/(n− 1), then a single room in which all players are truthtelling

is both welfare maximizing and an equilibrium.

Let the set of biases be Bη and fix all parameter values apart from η. Generically, full

separation is welfare maximizing and an equilibrium if η is sufficiently high.

Proof of proposition 18: Recall that a truthtelling equilibrium exists if and only if

for all players i
∣∣∣∑k ̸=i{bk/(n− 1)} − bi

∣∣∣ ≤ (σh − σl)/2 for every σh > σl in Σ. This can

be rewritten as |
∑

k{bk} − nbi| /(n− 1) ≤ (σh − σl)/2. The condition in the proposition

ensures that this inequality holds for all players and all signals. Clearly, having all players

in one room and telling the truth is welfare optimal whenever it is feasible.

If
∣∣∣∑k∈Ri,k ̸=i{bk/(n− 1)} − bi

∣∣∣ > (σh−σl)/2, then i will not be truthful when receiving

either signal σl or σh. Generically,
∣∣∣∑k∈Ri,k ̸=i{bk/(n− 1)} − bi

∣∣∣ ̸= 0 for any room configu-

ration containing players from more than one bias group. (This follows from the finiteness

of players which obviously implies that the number of such room configurations is finite.)

Now observe that the left hand side of the non-truthtelling inequality is scaled by η while

the right hand side is not. That is, for η sufficiently high player i will report the highest

(lowest) signal in Σ in all rooms in which
∑

k∈Ri,k ̸=j bk < nRi
bi (
∑

k∈Ri,k ̸=j bk > nRi
bi).

Put differently, any room that contains one or more players of a bias not equal to bi will

lead to totally uninformative messages by i if η is sufficiently high. For high enough η,

this holds true for all players and it is then obvious that full separation is both welfare

maximizing and an equilibrium.

9.2. Continuum of signals

In this subsection we consider the messaging game in a setup that differs from the one in

the paper by assuming that the signal space is not binary but a continuum. That is, we

take the room allocation as given and analyze equilibrium messaging strategies. Room

choice is considered briefly towards the end of the section. Occasionally, we will refer to a

player’s signal as his “type”. Instead of replicating the derivation of ∆Ui(σi) from section

9.1 we simply refer the reader at some points to it.

The main reason why our model is so tractable is that we can consider equilibrium

incentives player by player. That is, player j’s messaging strategy does not affect player

i’s incentives when deciding which message to take. This can be nicely seen from (9)

where the only factors influencing preferences over messages are the beliefs induced by

the messages, the bias distribution in the room and player i’s signal.
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We will first derive a few results that apply to general finite as well as infinite signal

spaces. Signals are without loss of generality viewed as posteriors, i.e. σk
i = E[θi|σk

i ].

Similarly, messages can – in equilibrium – be equated with the beliefs they induce. The

following lemma states that the support of player i’s message strategy is quite small: In

fact, each type mixes at most between two messages and these messages are in some sense

“adjacent”.

Lemma 5. In equilibrium, the support of type σk
i ’s strategy consists of at most two ele-

ments. If type σk
i mixes between two messages, then there is no message inducing a belief

in between the two beliefs induced by the messages in his support.

Proof of lemma 5: The indifference condition requires that σi is indifferent between any

two messages in his support. Denoting the messages as l and h which lead in equilibrium

to beliefs µl and µh (by the other players concerning θi), this indifference condition can,

as derived in section 9.1, be written as

µl + µh

2
+

∑
k∈Ri,k ̸=i

{
bk

nRi
− 1

}
− bi − σi = 0. (9)

The crucial insight is that – given that σi is indifferent between µl and µh, σi strictly

prefers inducing any belief µ̃ ∈ (µl, µh) to either µl or µh. To see this note that

µl + µ̃

2
+

∑
k∈Ri,k ̸=i

{
bk

nRi
− 1

}
− bi − σi < 0 <

µ̃+ µh

2
+

∑
k∈Ri,k ̸=i

{
bk

nRi
− 1

}
− bi − σi

by the indifference condition. This implies that µ̃ is strictly preferred to µl and µh (see

∆Ui(σi) as derived in section 9.1). It follows that a type can only mix between two

messages µl and µh in equilibrium if these two beliefs are “adjacent”, i.e. there is no

message inducing a belief between µl and µh.

In case of mixing, each message is only used by few signal types. Furthermore, there

is a standard order property in the sense that higher types send higher messages.

Lemma 6. Each message is used by at most two types that use truly mixed strategies. If a

type σi mixes between µl and µh > µl, then σk
i is the highest (lowest) type using message

µl (µh).

Proof of lemma 6: Suppose to the contrary that three types σk
i with k = 1, 2, 3 (i) use

truly mixed strategies and (ii) use a message inducing belief µ with positive probability.

As each type mixes only over two adjacent messages (see lemma 5), this would imply that

at least two of the three types have the same support. Clearly, indifference condition (9)

cannot be satisfied for different types and the same support µl and µh. Consequently,

each message is used at most by two types that mix.
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From the indifference condition, (9), and the expression ∆Ui(σi) it is clear that all

types below (above) σi strictly prefer µl over µh (µh over µl).

The order property of the previous lemma can be extended. In equilibrium, higher

signal types send weakly higher messages. This does not exclude the possibility that one

signal type mixes or that several signal types pool on the same message.

Lemma 7. The induced belief µk is weakly increasing in the received signal σk
i .

Proof of lemma 7: Take two signal types σh
i and σl

i with σh
i > σl

i. Suppose contrary

to the lemma that µ(σl
i) > µ(σh

i ). In equilibrium σl
i must prefer sending his message to

sending the message that σh
i sends in equilibrium, i.e.

µ(σl
i) + µ(σh

i )

2
+

∑
k∈Ri,k ̸=i

{
bk

nRi
− 1

}
− bi − σl

i ≤ 0.

If the previous inequality holds, then it holds strictly with σh
i in place of σl

i < σh
i . That is,

σh
i strictly prefers µ(σl

i) over µ(σ
h
i ) which contradicts that σh

i induces µ(σh
i ) in equilibrium.

After these preliminaries, we turn now to a model with a continuum of signals. Let

signal σi, i.e. player i’s ex post belief E[θi], be distributed according to some distribution Φ

with density ϕ > 0 on an interval, say [0, 1] for simplicity. Lemmas 6 and 7 imply then that

the equilibrium is a partition of [0, 1]. Note that truthfulness, i.e. truthfully revealing one’s

signal no matter what the signal is, is only feasible if ∆i ≡ bi−
∑

k∈Ri,k ̸=i bk/(nRi
−1) = 0.

That is, truthfullness is only an equilibrium if all players in a room share the same bias.

Furthermore, the partition will be finite with the maximal number of partition elements

being less than 1 + 1/(2|∆i|). Finiteness is straightforward: If the partition was not

finite, there would be types σi for which µ(σi) ≈ σi and messages arbitrarily close to

σi exist. But for ∆i ̸= 0, some of these types would clearly want to misrepresent. The

upper bound on the number of partition elements follows from the following observation:

Let σt−1
i , σt

i and σt+1
i be consecutive partition boundary type in an equilibrium partition.

Then σt
i has to be indifferent between the two messages µt = E

[
σi|σi ∈ [σt−1

i , σt
i ]
]
and

µt+1 = E
[
σi|σi ∈ [σt

i , σ
t+1
i ]
]
which means

µt+1 + µt = 2σt
i + 2∆i.

As µt+1 ≤ σt+1
i and µt ≤ σt

i , this implies that σt+1
i + σt

i ≥ 2σt
i + 2∆i or equivalently

σt+1
i − σt

i ≥ 2∆i. Hence, every partition element (with exception of the first) has length

of at least 2∆i if ∆i > 0 (for ∆i < 0 a similar argument using lower instead of upper

bounds for µ· works analogously). If a partition equilibrium with T partition elements

exists, then it can be computed similarly to Crawford and Sobel (1982): Say ∆i > 0 and

denote the partition by (σ0
i = 0, σ1

i , . . . , σ
T
i = 1). For t ∈ {1, . . . , T − 1}, the indifference
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condition of σt
i determines σt+1

i , i.e.

∫ σt+1
i

σt
i

σi dΦ(σi)

Φ(σt+1
i )− Φ(σt

i)
= 2σt

i + 2∆i −

∫ σt
i

σt−1
i

σi dΦ(σi)

Φ(σt
i)− Φ(σt−1

i )
. (10)

That is, as soon as σ1
i is fixed, all other values are determined inductively by this condition.

Note that not any σ1
i belongs to an equilibrium partition as eventually the indifference

condition for σT−1
i has to yield σT

i = 1. If the following monotonicity condition (M) holds,

then there is an essentially unique equilibrium with T partition elements for all T up to

some T̄ .

(M): Partition cutoff types obtained from some σ1
i through induction by (10) are

increasing in σ1
i , i.e. σ

t
i(σ

1
i ) > σt

i(σ
1
i
′
) if and only if σ1

i > σ1
i
′
.

To give an example, suppose Φ is the uniform distribution on [0, 1]. Then µt =

(σt−1
i + σt

i)/2 and (10) becomes

σt+1
i = σt

i + (σt
i − σt−1

i ) + 4∆i

which clearly satisfies (M). For t ≥ 2, this can be solved as

σt
i = tσ1

i + 4∆i

t−1∑
j=1

j.

A T element partition has to satsify σT
i = 1 or 1 = Tσ1

i + 4∆i

∑T−1
j=1 j which means

that σ1
i (T ) =

[
1− 4∆i

∑T−1
j=1 j

]
/T . If 1 − 4∆i

∑T−1
j=1 j < 0, then no equilibrium with

T partition elements exists. This illustrates that a higher ∆i leads to a less informative

equilibrium in the sense that there are less partition elements. The derivation of the most

informative equilibrium for the case ∆i < 0 is analogous.

Regarding room choice, we do not attempt a full characterization of the equilibrium.

However, our result that sufficiently large polarization makes segregation generically op-

timal follows directly from the derivations above: Let the set of biases be such that no

possible room has ∆i = 0 for some player i unless the room consists only of players sharing

the same bias. This is satisfied for generic bias values. Consider a Bη scaling of the biases

as in the paper. Note that ∆i, now denoted as ∆i(η) = η∆i(1), scales linearly in η. For

η sufficiently high the upper bound on the number of partition elements 1 + 1/(2|∆i(η)|)
will be below 2 and babbling will be the only equilibrium. This is true in all possible

rooms not consisting of only players sharing the same bias. Note that the number of

possible rooms is finite due to the finite number of the players and therefore there exists

a η̄ such that babbling is the unique equilibrium in all rooms in which players do not

share the same bias for all η ≥ η̄. It follows immediately that full segregation is optimal

and an equilibrium for η ≥ η̄. Similarly, it is straightforward that equilibrium partitions
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can be arbitrarily fine as η → 0. Consequently, full integration is welfare optimal and an

equilibrium for η sufficiently low.11

9.3. Single state

In this variation, a state of the world θ ∈ Θ is distributed according to distribution F .

The state is unobserved but each player i out of n players receives a noisy signal σi ∈ Σ of

the state where σi is conditional on θ distributed according to Gθ. The signals are private

and – conditional on the state – independent across players. (The latter assumption is

relaxed at the end of this subsection.) After observing his signal, a player can access one

of K ≥ 2 “rooms” and send a message mi ∈ M. The message is received by all players in

the same room. Afterwards each player takes an action ai.

The payoff of player i is u(a, bi, θ) = −(ai − bi − θ)2 − α
∑

j ̸=i(aj − bi − θ)2 where a

denotes the vector of actions of all players and bi ∈ B is a commonly known“bias”of player

i. That is, player i would like that all players choose the action bi + θ. The parameter α

measures the relative weight players assign to other players’ behavior. Players are assumed

to maximize expected utility.

The solution concept used is perfect Bayesian Nash equilibrium.

For simplicity, let Θ = {θh, θl} and Σ = {σl, σh} and the signal structure is such

that prob(σj|θj) = p > 1/2. We let the message space be binary as well: M = {h, l}.
Furthermore, we let B = {0, b} and assume that there is at least one player with each of

the two biases.

Action choice Denote the belief of player i that the state of the world is high by µi (after

observing his signal and listening to all the messages in his room). The expected utility

of player i can then be written as

U(a, µi) = −a2i − E
[
(bi + θ)2

]
+ 2ai(bi + E[θ])− α

∑
j ̸=i

E
[
(aj − bi − θ)2

]
(11)

= −a2i − µi(bi + θh)2 − (1− µi)(bi + θl)2 + 2ai(bi + µiθ
h + (1− µi)θ

l)

−α
∑
j ̸=i

[
µi(aj − bi − θh)2 + (1− µi)(aj − bi − θl)2

]
The optimal action choice of player i is then

a∗i = bi + E[θ] = bi + θl + µi(θ
h − θl). (12)

11To see this it is sufficient to note that (i) full integration is the unique welfare optimal allocation
for η = 0, i.e. in a situation in which all players have the same bias, and (ii) information (in the most
informative messaging equilibrium) in any given room allocation approaches full information as η → 0.
This implies that welfare in a given room allocation approaches welfare under full information in this
room allocation as η → 0.
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Cheap talk The cheap talk game can – as usual – have several equilibria. There is

always a babbling equilibrium where the message is independent of the observed signal

and therefore nothing about the state of the world is learned, e.g. mi(σi) = σh for all

σi ∈ Σ and µi = p (µi = 1 − p) if σi = σh (σi = σl). We will focus on most informative

equilibria, that is equilibria where mi(σi) = σi with as high probability as possible.

Truthful communication is an equilibrium for a given room if all players in this room

have the same bi. To see this, suppose player i could maximize his expected utility (1) not

only over ai but also over the aj of all the players in his room. Clearly, he would choose the

same action for everyone namely bi+θl+µi(θ
h−θl). Deviating from the truthful strategy

is not profitable because by adhering to truthfulness player i ensures that all other players

in the room choose precisely the action he would have chosen for them (while deviating

changes the other players’ beliefs and therefore their optimal action). Note that this

argument depends on all players having the same bias and truthful communication is

normally not an equilibrium if players in a given room have different biases. We state this

result for future reference in the following lemma.

Lemma 8. If all players in a given room have the same bias, truthful communication in

this room is the most informative equilibrium of the cheap talk game (taking room choice

as given).

We will now analyze the cheap talk problem in rooms in which players with both types

of biases are present. In particular, we will be interested in the case of strong differences

in opinion, i.e. the case where b is sufficiently large.

Lemma 9. Let n0 ≥ 1 players with bias bi = 0 and nb ≥ 1 players with bias bi = b be in

a room. There exists a b̄ such that for b ≥ b̄ babbling is the only equilibrium of the cheap

talk game.

Proof of lemma 9: Suppose that there is a non-babbling equilibrium, i.e. an equilib-

rium where belief µj depends on the messages of players i ̸= j. Let i be a player affecting

j’s belief. Without loss of generality, say µj is lower if i sends the message l and higher if i

sends the message h. By Bayesian updating and independence of the signals, µk will then

be lower when i sends message l than when he sends message h for all k ̸= i. (Moreover

two players that observe the same signal themselves and are in the same room will have

the same belief because of Bayesian updating and independence of signals.) Hence it is

without loss of generality to assume that bi ̸= bj. For concreteness, let bi = 0 and bj = b

(the proof for the opposite case is analogous).

Now suppose i observes signal σh. We will show that it is optimal for i to send message

l if b is sufficiently high. To see this, denote the change in i’s expected utility (11) when
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sending message l instead of message h as ∆Ui
12

∆Ui = −α
∑
j ̸=i

E
[
aj(l)

2 − aj(h)
2 − 2θ(aj(l)− aj(h))

]
= −α

∑
j ̸=i

E
[(
µj(l)

2 − µj(h)
2
) (

θh − θl
)2

+ 2(µj(l)− µj(h))(θ
h − θl)(bj + θl − θ)

]
= α

∑
j ̸=i

E
[
(µj(h)− µj(l))

(
θh − θl

)
∗
(
(µj(h) + µj(l))(θ

h − θl) + 2(bj + θl − θ)
)]

= α
(
θh − θl

)
nbE

[
(µj(h)− µj(l)) ∗

(
(µj(h) + µj(l))(θ

h − θl) + 2(b+ θl − θ)
)]

+α
(
θh − θl

)
(n0 − 1)E

[
(µj(h)− µj(l)) ∗

(
(µj(h) + µj(l))(θ

h − θl) + 2(θl − θ)
)]

= α
(
θh − θl

)
(nb + n0 − 1)

E
[
(µj(h)− µj(l)) ∗

(
(µj(h) + µj(l))(θ

h − θl) + 2

(
nbb

nb + n0 − 1
θl − θ

))]
.

If b ≥ θh(nb + n0 − 1)/(θlnb), the term inside the expectation is positive for any θ and

therefore ∆Ui is definitely strictly positive. Hence, i strictly prefers sending message

l to message h and i receives signal σh. This would imply that i sends message l with

probability 1 if the signal is σh in this equilibrium. But this contradicts that µj(l) > µj(h).

Hence, choosing b̄ = θhN/θl where N is the total number of agents implies b̄ ≥ θh(nb +

n0 − 1)/(θlnb) and gives the result.

Lemma 9 implies that – given a finite number of players – the only way allowing

meaningful communication if differences in opinion is high is to have only players with

the same bias in a room.

If the differences in opinion are minimal, i.e. b is very low, truthful communication is an

equilibrium for any room composition. The reason is the coarseness of the signal structure:

Lying in the message game leads – in a truthful equilibrium – to a discrete reaction of

all other players in the room. If the difference in bias is very small, this discrete reaction

is “too high”, i.e. even those players with a (slightly) different bias react more than the

deviating player would wish for. The following lemma formalizes this generalization of

lemma 8.

Lemma 10. Let there be n0 ≤ n players with bi = 0 and nb ≤ n−n0 players with bi = b in

a room. There exists a b > 0 such that for b ≤ b truthful communication is an equilibrium.

Proof of lemma 10: For b = 0, truthtelling is strictly better than lying (given that

all other players tell the truth). Note that i’s expected utility is continuous in aj and a∗j

is continuous in bj, see (12). Hence, Ui is continuous in bj. However, µj and therefore

a∗j reacts discretely to lying. Consequently, truth-telling is still a best response to truth-

telling for bj > 0 sufficiently small.

12For a more general proof, one could already go from the first line to
α
∑

j ̸=i E [(aj(h)− aj(l)) ∗ (aj(h) + aj(l)− 2θ)] and then note that for b high enough even aj(l) > θh.

36



From lemma 9 and lemma 10 we know that for b low the most informative equilibrium

in a room with a given configuration is truth-telling and for b sufficiently high the “most

informative” equilibrium is babbling if players with different biases are present. It seems

most likely that b̄ > b. In this case, there are mixed strategy equilibria for b ∈ (b, b̄).

Room choice equilibria We claim that separation is an equilibrium if differences in

opinion, i.e. the parameter b, are sufficiently high.

Proposition 19. If b ≥ b̄, the following strategies constitute an equilibrium:

1. Players with bias 0 (b) go to room 0 (1).

2. A player sends truthful messages if only players of the same type are in his room

and babbles otherwise.

3. Actions are taken according to (12) and beliefs µi are formed using Bayes’ rule

(given the equilibrium strategies in 1 and 2).

This equilibrium is the most informative equilibrium in the sense that no player has more

precise information about the state θ in any other equilibrium.

Proof of proposition 19: Given lemma 9, unilateral deviations to other rooms are not

profitable: Any such deviation would either lead to being alone in a room or babbling.

In either case, the deviating player does not have any information beyond his own signal

about the state of the world. This reduces his expected utility directly. Furthermore,

deviations lead to less information for other players which again lowers the deviating

player’s payoff: Less information for players with the same bias as player i implies that

their actions are further away from bi + θ in expectation. Furthermore, the players with

bj ̸= bi choose actions further away to bj + θ if they have less information, i.e. variance

of their choice is increased while the expected value stays the same. Given the strictly

concave loss function, player i looses from this as well.

Lemmas 8 and 9 imply that no profitable deviation in the cheap talk stage exists. As

(12) gives the optimal action (given one’s beliefs), no deviation in choosing one’s action

is profitable either.

By lemma 9, a given player i cannot observe more “non-babbling” messages than in

the suggested equilibrium in any other equilibrium. Given that communication is truthful

in the suggested equilibrium, player i can therefore not have more precise information

about θ in any other equilibrium.

For b ≤ b, the most informative equilibrium is clearly that every player goes to the

same room and truthfully reports his signal.
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Welfare optimal room allocation Suppose a social planner could allocate players to

rooms. After being assigned a room, players play the same game as above; that is, the

planner has no influence on messages or actions. We claim that for b ≥ b̄ the welfare

optimal allocation is to assign everyone with bias 0 in one room and everyone with bias b

in another room, i.e. the equilibrium described in proposition 19 is welfare optimal. The

idea is the following: For b ≥ b̄, the cheap talk game in a room where players with both

bias types are present will only have a babbling equilibrium by lemma 9. Consequently,

any room allocation that assigns players with different biases to the same room will lead to

completely uninformative messages and is therefore equivalent to putting every player to

a separate room. By assigning players with the same bias to the same room, the planner

achieves the most informative equilibrium. That is, truthful communication is possible in

each room. The additional information ensures that player with the same bias as player i

choose actions closer to bi+ θ. Furthermore, the players with bj ̸= bi choose actions closer

to bj + θ, i.e. the variance is reduced while the expected value stays the same. Given

the strictly concave loss function, player i gains from this as well. Note that the welfare

notion can be chosen quite strict in the sense that the described allocation maximizes the

welfare of every agent. That is, if agent i could dictatorially decide the room allocation

(without having any influence on the messages or actions taken by other players), the

same allocation would result.

Similarly, the most informative equilibrium is welfare optimal in the strong sense

established above if b ≤ b.

Correlated signals Finally, we want to discuss an extension to this model: People with

similar biases might be similar in other respects and therefore have similar information.

More precisely, one could imagine that the signals of people with the same bias are pos-

itively correlated conditional on the state. The following paragraphs shows that similar

results as before hold when signals are correlated.

The main difficulty is to show a result similar to lemma 9 all other results go through

without change. The following lemma states that in the limit as b grows large no infor-

mation can be transmitted in equilibrium. The result is somewhat weaker than lemma 9

but similar in nature.

Lemma 11. Let n0 ≥ 1 players with bias bi = 0 and nb ≥ 1 players with bias bi = b be

in a room. Let the signal technology be such that signals are not perfectly correlated and

such that all signal vectors have strictly positive probability. For every ε > 0, there exists

a bε such that Em−i,σj

[
µj(mi = σh)− µj(mi = σl)|σi

]
< ε in every equilibrium.

Proof of lemma 11: Suppose that there is a non-babbling equilibrium, i.e. an equilib-

rium where belief µj depends on the messages of players i ̸= j. Let i be a player affecting

j’s belief. Without loss of generality, say µj is lower if i sends the message l and higher if
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i sends the message h. By Bayesian updating, µk will then be lower when i sends message

l than when he sends message h for all k ̸= i. First, let bi ̸= bj. For concreteness, let

bi = 0 and bj = b (the proof for the opposite case is analogous).

Now suppose i observes signal σh. To make an informative equilibrium possible, the

change in i’s expected utility (1) when sending message l instead of message h, ∆Ui, must

not be strictly positive:

∆Ui = −α
∑
j ̸=i

E
[
aj(l)

2 − aj(h)
2 − 2θ(aj(l)− aj(h))

]
= −α

∑
j ̸=i

E
[(
µj(l)

2 − µj(h)
2
) (

θh − θl
)2

+ 2(µj(l)− µj(h))(θ
h − θl)(bj + θl − θ)

]
= α

∑
j ̸=i

E
[
(µj(h)− µj(l))

(
θh − θl

)
∗
(
(µj(h) + µj(l))(θ

h − θl) + 2(bj + θl − θ)
)]

> α
∑
j ̸=i

E
[
(µj(h)− µj(l))

(
θh − θl

)
∗
(
(µj(h) + µj(l))(θ

h − θl) + 2(bj + θl − θh)
)]

= α
(
θh − θl

) (
nbbE

[
µj(h)− µj(l)|bj = b, σi = σh

]
+
∑
j ̸=i

E
[
(µj(h)− µj(l))(µj(h) + µj(l)− 2)(θh − θl)

])
> α

(
θh − θl

) (
nbbE

[
µj(h)− µj(l)|bj = b, σi = σh

]
− 2N(θh − θl)

)
whereN = nb+n0. Clearly, the last expression is greater than zero if bE

[
µj(h)− µj(l)|bj = b, σi = σh

]
>

2N(θh − θl)/nb. Hence, bε = 2N(θh − θl)/(nbε) gives the result in the lemma.

Second, let bj = bi. Note that the result above says that i’s message contains no

information in the limit as b → ∞. It follows that given that the signal technology is (i)

not perfectly correlated and (ii) puts strictly positive probability on all signal vectors, the

result has to hold also for j with bj = bi.
13

10. Follower model

This section replicates our results for a slightly different model in which instead of choosing

“rooms” in the first stage, players choose which other players to “follow”. Players are

unrestricted regarding the size and composition of the set of players they follow. In

the second stage every player sends one cheap talk message to his “followers”. We will

adopt the convention that each player follows himself (which is immaterial for the results

but allows us to proceed with some of the derivations analogously to the paper.) Signal

technology and preferences are the same as in the paper.

13The two assumptions avoid that lying leads to a zero probability event where beliefs cannot be
determined by Bayes’ rule.
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Clearly, the optimal action is still

a∗i = bi +
n∑

j=1

E[θj].

More importantly, lemma 1 still applies and we can concentrate on pure strategy

equilibria.

Lemma 12. Let (m1, . . . ,mn) be equilibrium strategies. If mi is a mixed strategy, then there

also exists an equilibrium with strategies (mt
i,m−i), where mt

i is the truthful strategy.

Proof. Denoting i’s followers by Fi, the set of player i is following by fi and fixing

some equilibrium (m1, . . . ,mn), player i’s expected payoff when sending message mi to Fi

can be written as

Ui(mi|σi) = E

−(ai(m−i,Ri
, σi)− bi −

n∑
k=1

θk

)2

− α
∑
j ̸∈Fi


(
aj(m−i,fj , σj)− bi −

n∑
k=1

θk

)2


−α
∑

j∈Fi,j ̸=i


(
aj(mi,m−i,fj , σj)− bi −

n∑
k=1

θk

)2

∣∣∣∣∣∣σi

 .

which can be split in a part that is independent of i’s message mi and a part that depends

on mi:

Ui(mi) = E

const− α
∑

j∈Fi,j ̸=i

(
aj(mi,m−i,fj , σj)− bi −

n∑
k=1

θk

)2
∣∣∣∣∣∣σi

 .

Specifically, sending message mh gives expected payoff

Ui(m
h) = E

const− α
∑

j∈Fi,j ̸=i

(
bj − bi + µh

ji +
∑
k ̸=i

µjk − θi −
∑
k ̸=i

θk

)2
∣∣∣∣∣∣σi


where µh

ji = E[θi|mi = mh] , i.e. µh
ji is the belief of a player j (following i) concerning θi if

player i sends message mh. Note that this belief is the same for all players j ̸= i following

i. Sending message ml gives

Ui(m
l) = E

const− α
∑

j∈Fi,j ̸=i

(
bj − bi + µl

ji +
∑
k ̸=i

µjk − θi −
∑
k ̸=i

θk

)2
∣∣∣∣∣∣σi


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where µl
ji = E[θi|mi = ml]. The difference in expected payoff is then

∆Ui(σi) = (Ui(m
h)− Ui(m

l))/α

= −
∑

j∈Fi,j ̸=i

E

[
µh
ji

2 − µl
ji

2
+ 2(µh

ji − µl
ji)

(
bj − bi +

∑
k ̸=i

µjk − θi −
∑
k ̸=i

θk

)∣∣∣∣∣σi

]

= −2(µh
ji − µl

ji)
∑

j∈Fi,j ̸=i

[
µh
ji + µl

ji

2
+ bj − bi − E [θi|σi]

]

= 2(µh
ji − µl

ji)(nFi
− 1)

[
−
µh
ji + µl

ji

2
−
∑

j∈Fi,j ̸=i bj

nFi
− 1

+ bi + E [θi|σi]

]
(13)

where nFi
denotes the number of elements in Fi. (For the transformation to line 3, we

make use of the fact that µ·
ji is the same for all j ∈ Fi \ {i}.)

Player i is only willing to choose a mixed strategy after receiving signal σi if ∆Ui(σi) =

0. From expression (13) it is clear that this can only be true for at most one signal as

E [θi|σi] varies in σi. Furthermore, Ui(σ
h) = 0 implies Ui(σ

l) < 0 and similarly Ui(σ
l) = 0

implies Ui(σ
h) > 0.

Now suppose i’s equilibrium strategy mi is mixed after signal σh. Then, ∆Ui(σ
h) = 0

implies ∆Ui(σ
l) = 2(µh

ji−µl
ji)(nFi

−1)(1−2p) < 0 and thereforemi(σ
l) = ml which implies

µh
ji = p as a mh is only sent by i after receiving signal σh. This implies (µh

ji+µl
ji)/2 ≥ 1/2

as µl
ji ≥ 1 − p. Now consider the equilibrium candidate (mt

i,m−i). With the truthful

strategy mt
i, µ

th
ji = p and µtl

ji = 1− p and therefore (µth
ji + µtl

ji)/2 = 1/2. This implies that

∆Ui(σ
h) > 0 in the equilibrium candidate (mt

i,m−i), i.e. truthful reporting is optimal

for i after receiving signal σh. In the equilibrium candidate (mt
i,m−i), truthful messaging

is still optimal after signal σl as well: From p > 1/2, µh
ji ≤ p and µl

ji ≤ 1/2 it follows

that −1/2 + (1 − p) < −
(
µh
ji + µl

ji

)
/2 + p. As in the original equilibrium (mi,m−i) we

had ∆Ui(σ
h) = 0 and therefore −

(
µh
ji + µl

ji

)
/2 + p =

∑
j∈Ri,j ̸=i bj/(nFi

− 1) + bi, we get

that −1/2 + 1 − p <
∑

j∈Fi,j ̸=i bj/(nFi
− 1) + bi and therefore Ui(σ

l) < 0 in the truthful

equilibrium candidate (mt
i,m−i). Hence, truthful messaging is i’s best response in the

equilibrium candidate (mt
i,m−i). Finally, note that the ∆Uj(σj) for j ̸= i is not affected

by changing i’s strategy from mi to mt
i. Hence, (m

t
i,m−i) is an equilibrium.

The argument in case i’s strategy is mixed after signal σl is analogous.

The previous lemma (and its proof) allow a characterization of the equilibrium mes-

saging strategy in the most informative equilibrium and an analogue to theorem 1.

Theorem 5. Let b =
∑

k∈Fi
bk

nFi
be the mean bias of i’s followers. In the most informative

equilibrium in this room, a player i tells the truth to his followers if

bi ∈
[
b− nFi

− 1

nFi

(p− 1

2
), b+

nFi
− 1

nFi

(p− 1

2
)

]
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and babbles otherwise.

Proof. As in theorem 1 in the paper.

We proceed by turning to stage 1. Take some follower allocation as fixed, then the

expected payoff of player i following players in fi while having followers Fi equals

Ui = −E

 ∑
j∈f truth

i ∪{i}

(µij − θj) +
∑

j ̸∈f truth
i ∪{i}

(
1

2
− θj)

2

+α
∑
j ̸=i

bj − bi +
∑

k∈f truth
j ∪{j}

(µjk − θk) +
∑

k ̸∈f truth
j ∪{j}

(
1

2
− θk)

2

where f truth
i are the players in fi that send truthful/informative messages in equilibrium

and fi \ f truth
i are those players in fi that are babbling.

For any i ̸= j, the two values of θi and θj are independent; the same is true for µij and

µik. Hence E [µij − θj] = 0 and E [(µij − θj) (µik − θk)] = 0, which means that the above

expression can be rewritten as

Ui = −
∑

j∈f truth
i ∪{i}

E
[
(µij − θj)

2
]
−

∑
j ̸∈f truth

i ∪{i}

E
[
(
1

2
− θj)

2

]

−α
∑
j ̸=i

(bj − bi)
2 − α

∑
j ̸=i

∑
k∈f truth

j ∪{j}

E
[
(µjk − θk)

2
]
− α

∑
j ̸=i

∑
k ̸∈f truth

j ∪{j}

E
[
(
1

2
− θk)

2

]
.

Now note that E [(µjk − θk)
2] can have two possible values in the most informative equilib-

rium: If k ∈ f truth
j ∪{j}, i.e. if j has received information about θk, then E [(µjk − θk)

2] =

p(1 − p). If j has not received information about θk, then E [(µjk − θk)
2] = 1

4
. (We can

check that information always reduces variance and increases welfare since p > 1
2
and

hence p(1 − p) < 1
4
.) This allows to denote utility in the notation of the paper using

pieces of information

Ui = −α
∑
j ̸=i

{(bj − bi)
2} − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))

[
ζi + α

∑
j ̸=i

ζj

]

and express welfare as

W =
∑
i

Ui =
∑
i

[
−α
∑
j ̸=i

{(bj − bi)
2} − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))

[
ζi + α

∑
j ̸=i

ζj

]]

= −α

n∑
i=1

∑
j ̸=i

{(bj − bi)
2} − 1

4
n2 [1 + α(n− 1)] + (p− 1

2
)2(1 + α(n− 1))

∑
i

ζi.

In this expression, all terms are model parameters except for the sum over all ζi, which
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shows that welfare is linearly increasing in
∑

i ζi.

We are now ready to analyze equilibrium follow decision. The following describes

player j’s best response: Hold arbitrary stage 1 decisions of players other than j fixed.

From the expression for Ui in terms of pieces of information, it is clear that it is uniquely

optimal for j to follow i if i tells the truth given the stage 1 decisions of the other

players and j’s decision to follow. Furthermore, j is indifferent between following i and

not following i if i babbles regardless of j’s choice. Last but not least, j optimally does

not follow i if following leads to babbling by i while not following allows informative

messages by i. This leads to the following result which is in line with the empirically

found homophily.

Proposition 20. It is weakly dominant for j to follow i if |bj − bi| ≤ (p− 1/2)/2.

Proof. From the reasoning of the previous paragraph, it is sufficient to show that

j following i will not cause i to babble (given some arbitrary first stage choices of the

other players) if |bj − bi| ≤ (p − 1/2)/2. If j follows i, then nFi
≥ 2 (recall that by

convention i ∈ Fi) which implies (nFi
− 1)/nFi

≥ 1/2. Consequently, i will tell the truth

if j is the only player following i. Now consider the case where some players (other

than j) are following i. If i is truthtelling without j following him, then, by theorem 5,

bi ≥ b̄− (p−1/2)(nFi
−1)/nFi

where b̄ is the average bias of players other than j following

i. By the condition of the proposition bi ≥ bj +(p− 1/2)/2 and bringing the previous two

inequalities together yields

bi ≥
(nFi

− 1)b̄+ bj
nFi

− (p− 1/2)
n2
Fi
− 3nFi

/2 + 1

n2
Fi

which implies

bi ≥
(nFi

− 1)b̄+ bj
nFi

− (p− 1/2)
nFi

nFi
+ 1

.

Similarly, bi ≤ b̄+ (p− 1/2)(nFi
− 1)/nFi

and bi ≤ bj + (p− 1/2)/2 imply

bi ≤
(nFi

− 1)b̄+ bj
nFi

+ (p− 1/2)
n2
Fi
− 3nFi

/2 + 1

n2
Fi

.

Consequently, i will be truthtelling when j follows him if i is truthtelling when j does not

follow him.

The simple characterization of equilibria above makes it straightforward to characterize

the structure of the most informative and therefore welfare maximizing equilibrium in

stage 1. The welfare optimal set of followers for i can be determined independently of the

welfare optimal set of followers of other players. In fact, it is given by simple maximization

problem:
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Proposition 21. The welfare optimal set of i’s followers, F ∗
i , is given by the maximization

problem maximizing the number of elements of Fi subject to the truthtelling constraint

bi ∈
[∑

j∈Fi
bj

nFi

− nFi
− 1

nFi

(p− 1/2),

∑
j∈Fi

bj

nFi

+
nFi

− 1

nFi

(p− 1/2)

]
(14)

where nFi
=
∑

j∈Fi
1j∈Fi

. The welfare optimal follower allocation (F ∗
1 , . . . , F

∗
n) is an

equilibrium.

Proof. Welfare is increasing in the pieces of information provided in equilibrium. The

maximal number of pieces of information provided by i is given by the results of the

maximization problems in the proposition. As there are no constraints on how many

players to follow, (F ∗
1 , . . . , F

∗
n) is feasible. It is also an equilibrium: No player i wants to

follow an additional player j as – by the definition of (F ∗
1 , . . . , F

∗
n) – this would lead to

babbling by j. As each player is only following players that are truthtelling, no player

i ∈ F ∗
j benefits from not following j.

Note two implications of the previous proposition. First, a pure strategy equilibrium

exists. Second, the welfare optimal follower allocation always coincides with the follower

allocation in the welfare optimal equilibrium.

Let B = {b1, b2, . . . , bn} be a bias configuration. (Note that this is not a set, as several

people can have the same bias.) Assume that B is generic in the sense that no bias is

the average of any set of other biases (except in cases where several people have the same

bias). Now we can consider an alternative bias configuration Bη, with η ∈ (0,∞), which

for every bi in B contains ηbi. Then the following is true:

Theorem 6. (i) If η is sufficiently close to 0, full integration, i.e. Fi = {1, . . . , n} for all

i = 1, . . . , n, is welfare-optimal for bias configuration Bη.

(ii) If η is sufficiently large, full segregation by bias types is generically welfare-optimal

for bias configuration Bη.

Proof. Note that the truthtelling constraint (14) for set of biases Bη can be written as

bi ∈
[∑

j∈Fi
bj

nFi

− 1

η

nFi
− 1

nFi

(p− 1/2),

∑
j∈Fi

bj

nFi

+
1

η

nFi
− 1

nFi

(p− 1/2)

]
.

For η → 0, this constraint is arbitrary slack while for η → ∞ it is arbitrarily strict. The

latter implies that for Bη such that no element is a convex combination of other elements

(not all of which equal to the initial element) no Fi apart from full segregation can satisfy

the constraint.

Example 1. As a straightorward example consider the binary case where bi ∈ {0, b} for all

players. Let nb (n0) be the number of players with bi = b (bi = 0). The welfare optimal

follower allocation is then as follows: Fi consists of all players j with bj = bi and k players
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with bj ̸= bi where k is the highest integer such that i’s truthtelling constraint still holds.

This implies the following: A majority player has more followers than a minority player.

A majority player has (weakly) more followers of a different bias type than a minority

player. As b grows larger, players have less and less followers of the other bias type. For

b above some critical b each minority player is only followed by the other members of the

minority. For b above some critical b̃ ≥ b each majority player is only followed by the

other members of the majority.

Moving away from the welfare optimal equilibrium note that other equilibria exist in

stage 1. In particular there are equilibria in which players babble. From the best response

structure we immediately get the following result.

Lemma 13. If player i babbles given followers Fi, then i would still babble if his set of

followers was Fi \ {j} for j ∈ Fi.

Proof. Suppose there existed a j ∈ Fi such that i would not babble with set of

followers Fi \ {j}. In this case, j has a profitable deviation: Not following i will increase

the number of pieces of information of some other players while it will not reduce the

number of pieces he has himself. By α > 0 the deviation is profitable.

The lemma indicates that in equilibrium there can be players that babble because they

are followed by too many other players. These player are however so much over-subscribed

by players with very different biases that they could still not tell the truth if an arbitrary

single player decided not to follow them anymore. That is, they are, so to speak, far away

from being tempted to tell what they know.

Some interesting comparison between extremists and centrists can be made based on

the best response structure of the cheap talk stage. Consider for instance “extremists”,

i.e. players with an unusual high or low bias. These players can send truthful messages if

they are followed by similarly extreme players. These will typically be only a few people

given that only a minority can have “extreme”, i.e. unusually high or low, biases. Now

consider a centrist, i.e. someone whose bias is close to the average of the population.

He can be followed by (nearly) everyone and he can still be truthtelling. In the extreme

case where his bias equals the average bis in the population, indeed everyone will follow

him in the welfare optimal equilibrium and he will be truthtelling. Compare this to

the extremist: If (sufficiently) many people follow an extremist, he will be babbling.

The following proposition uses the same intuition to show that in the welfare optimal

equilibrium centrists have more followers than extremists if the distribution of biases is

single peaked and symmetric.

Proposition 22. Let biases be distributed on an equally spaced finite grid and let the dis-

tribution of biases be single-peaked and symmetric around the mean. Then the number of

followers in the welfare maximal equilibrium is lower, the farther a player’s bias is away

from the mean bias.
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Proof of proposition 22: Denote the mean bias in the population by µb and order –

without loss of generality – players according to their biases, i.e. b1 ≤ b2 ≤ · · · ≤ bn. By

proposition 21, F ∗
i is given by maxnFi

subject to |bi−
∑

j∈Fi, j ̸=i bj/(nFi
− 1)| ≤ (p− 1/2).

Given the assumptions in the proposition, the solution to this maximization problem is

straightforward: If bi > µb, then Fi is the set of players {i, i + 1, . . . , n} where i ≤ i is

determined such that bi−
∑

j≥i,j ̸=i bj/(nFi
−1) ≤ (p−1/2) and bi−

∑
j≥i−1,j ̸=i bj/(nFi

−1)| >
(p − 1/2). Similarly, if bi < µb, then Fi is the set of players {1, 2, . . . , ī} where ī ≥ i is

determined such that −bi+
∑

j≤ī,j ̸=i bj/(nFi
−1) ≤ (p−1/2) and −bi+

∑
j≤ī+1,j ̸=i bj/(nFi

−
1)| > (p− 1/2). For bi = µb, clearly F ∗

i = {1, . . . , n}. From the definitions of i, ī and the

single peakedness of the bias distribution, the result follows directly.

11. Mediated talk

In this section we analyze to what extent an impartial mediators can improve communi-

cation in a given room. Instead of sending a message to all players in the room, player i

sends a private message to mediator i. The mediator then makes an announcement that

is heard by all players in the room. Ex ante the mediator commits to a strategy which

maps from the messages he receives into the announcements he makes. This commitment

is the key that allows us to improve communication.

Before going into the details, we want to make a few remarks about the setup. First, we

start with a setting where each player has a separate mediator and each mediator receives

only the message of one player. This allows us to use commitment to improve cheap talk.

There is another version in which all players send messages to the same mediator and we

will come back to this below. Second, our mediators send the same message to each player

in the room. If we allowed the mediator to send private messages to each player in the

room we would effectively destroy the room structure as mediators could effectively create

subrooms and all kind of other network structures. (This is particularly true if we move

to a setting with only one mediator.) To stay in line with our model we therefore assume

that a mediator sends one message received by all players in the room. Furthermore,

our mediators have no information apart from the message that they receives from the

players. In particular, a mediator does not receive messages from players in other rooms.

Again assuming anything else would effectively destroy the room structure.

By an argument akin to the revelation principle, we can focus on mediator strategies

that induce the agents to truthfully reveal their signal. As the only thing the players are

interested in (for choosing their actions) is the expected state θ, it is also without loss to

let mediator i announce a forecast for θi. It is without loss of generality to restrict the

mediator’s strategy such that i believes the forecast for each θj where j ̸= i. By Bayesian

rationality, the mediator’s strategy has then to be such that the expected forecast has

to equal the ex ante expected value of θ. The question is whether mediation can lead to
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more truthtelling. Note that for those player in a given room that are truthtelling without

mediation their mediator can commit to truthtelling. (Recall that other players’ strategies

– and therefore also their mediators’ strategies, are irrelevant for player i’s incentives to

tell the truth.) We can consequently focus on those players who are babbling without

mediation and start by giving an example where mediation improves truthtelling.

Let there be three players in the room with b1 = −b, b2 = 0 and b3 = b for some b > 0.

The truthtelling interval without mediation is then [−2(p−1/2)/3, 2(p−1/2)/3] and only

includes player 2 if b > 2(p− 1/2)/3 which will be assumed here. Now suppose mediator

1 commits to the following strategy: Whenever player 1 sends message h, mediator 1

will send message h but if player 1 sends message l the mediator will mix between l

and h with probabilities λ and 1 − λ. This implies that players −i know that i’s signal

was l whenever the mediator sends message l, and therefore µl
ji = 1 − p, but adopt

belief µh
ji = (1 − λ(1 − p))/(2 − λ) if they receive message h from the mediator. It is

straightforward that i has an incentive to tell the truth to the mediator if his signal is l.

Therefore, consider i’s incentives when his signal is h. With probability λ the mediator will

send message l regardless of i’s message and this case is therefore irrelevant for comparing

i’s truthtelling incentives. With probability 1−λ i’s message decides whether µji is either

µl
ji or µ

h
ji. Following 13 in the main text (proof of lemma 1), i will therefore have incentives

to tell the truth to the mediator if and only if

−3/2− λ+ λp− p

2− λ
− b

2
− b+ p ≥ 0

which is equivalent to

λ

(
3

2
b− (2p− 1)

)
≥ 3(b− (p− 1/2)).

If b ∈ (2(p− 1/2)/3, p− 1/2), then there exist λ ∈ (0, 1) such that this inequality holds.

This implies that the suggested mediation scheme can improve communication for players

who are just outside the no-mediation truthtelling interval but not for players who are

very far outside this interval. (Of course, the analysis for player 3 is analogous to player

1 in this example).

The strategy of the mediator in the example above is in fact the best the mediator

can possibly do. Note that the problem of player 1 is not to truthfully report message l

but to truthfully report message h. By mixing after message l, the mediator relaxes this

truthtelling constraint in two ways: First, with some probability 1−λ the mediator sends

message h regardless of i’s message. Second, the effect of the mediator sending message

h is less problematic for player i as it leads to a belief µh
ji below p. (Note that the belief

µl
ji, however is kept at 1 − p and therefore as low as possible in order to make sending

the low message after a high signal as unattractive as possible for player i.) However,
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the mediator cannot arbitrarily lower µh
ji: As the signal structure has to be consistent

with Bayes’ rule, the lowest possible belief µh
ji is the prior 1/2. If b is so high that i is

not truthtelling for µl
ji = 1 − p and µh

ji = 1/2, then the mediator cannot improve the

outcome. While this result was shown through an example, it should be clear that this

holds more general. The bounds µh
ji ≥ 1/2 and µl

ji ≥ 1− p imply through equation 13 in

the main text (proof of lemma 1) that truthtelling is impossible (unless µh
ji = µl

ji which

is equivalent to babbling) after a high signal if

bi <
1/2 + 1− p

2
+

∑
j∈Ri, j ̸=i bj

nRi
− 1

− p

and similarly the bounds µh
ji ≤ p and µl

ji ≤ 1/2 imply that truthtelling is impossible after

a low signal if

bi >
1/2 + p

2
+

∑
j∈Ri, j ̸=i bj

nRi
− 1

− (1− p).

This result can be extended to the case where one mediator receives signals by all

players and the publicly announces a forecast: For bi−
(∑

j∈Ri, j ̸=i bj

)
/(nRi

−1) sufficiently

high, the term in brackets in 13 in the main text (proof of lemma 1) will be strictly

positive for all feasible values of µh
ji and µl

ji and therefore truthtelling after a low signal is

infeasible unless i’s message does not affect the mediator’s forecast. Similarly, truthtelling

is impossible if bi −
(∑

j∈Ri, j ̸=i bj

)
/(nRi

− 1) is too low, i.e. too negative, as truthtelling

after a high signal is impossible.

As bi −
(∑

j∈Ri, j ̸=i bj

)
/(nRi

− 1) scales in η if the set of biases is Bη, theorem 3 and

proposition 2 in the paper still hold if we consider mediated talk.
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