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Abstract

We analyze optimal procurement mechanisms when firms are specialized. The

procurement agency has incomplete information concerning the firms’ cost func-

tions and values high quality as well as low price. Lower type firms are cheaper

(more expensive) than higher type firms when providing low (high) quality.

With specialized firms, distortion is limited and a mass of types earns zero

profits. The optimal mechanism can be inefficient: types providing lower second

best welfare win against types providing higher second best welfare. As standard

scoring rule auctions cannot always implement the optimal mechanism, we intro-

duce a new auction format implementing the optimal mechanism.
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1. Introduction

Consider a government that needs to procure electric power. On the one hand, it is

interested in a low price per kWh. On the other hand, the government is concerned

about the effects of power generation on the environment; say, carbon emissions.1 For

the moment, fix the quantity that needs to be procured and let q (“quality”) denote

an inverse measure of carbon emissions, that is high q denotes low emissions. Then

for a given technology, say a coal power plant, marginal abatement costs (MC) are

increasing. But for a technology like gas which is a more expensive fuel, marginal

abatement costs are lower than for coal at each q (see, for instance, Johnson et al.,

2013). If high emissions (low q) are allowed, coal is cheaper than gas. However, if high

environmental standards are enforced, gas is cheaper than coal. As standards are raised

further, technologies like wind and solar energy come to the fore. Depending on the

required level of q different technologies lead to lower costs.

Figure 1 is well known from micro economic textbooks (see, for instance, McAfee

and Lewis, 2007) and has a similar flavour. Here, q on the horizontal axis refers to

quantity produced by a firm. The figure shows the cost concepts average (total) costs

(AC) and marginal costs (MC) for different firms and has two important characteristics.

First, a firm has a (finite) scale that minimizes average costs –characterized by the MC

curve intersecting the AC curve. The textbook argues that in the real world firms tend

to face economies of scale at low output levels but dis-economies of scale at high output

levels. Second, one firm is not unambiguously “better” than the other. Depending on

the scale required, either firm can have lower costs per unit of output. Once we move

beyond the micro textbook however, say to mechanism design, these cost functions tend

1“Green Public Procurement” has been on the political agenda for already quite some years; see,
for example, Council of the European Union (2006).
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to be replaced by simpler ones where firms can be unambiguously ranked in terms of

efficiency.2 The highest type is then more efficient than all other types irrespective of

q, either as abatement or as scale.

This article analyzes a procurement setting with cost functions that have this prop-

erty that the identity of the firm with lowest cost varies with q. We follow the literature

on procurement and incentive regulation and assume that firms have private informa-

tion with regard to their cost functions (see, for example Laffont and Tirole, 1987,

1993; Che, 1993). This private information is represented by a “type” which is assumed

to be a scalar. Whereas this literature assumes that higher types have lower costs for all

q, we allow firms to be specialized: one firm has lower cost at scale q1 whereas another

is more efficient at scale q2. In particular, each firm has a scale where it is “best”: no

other firm can mimic this firm at this scale and earn the same or higher profits. In

terms of the two types in figure 1, no type wants to mimick the other if each produces

at q with minimal AC while earning zero rents.

[Figure 1 about here.]

In line with the carbon abatement example above, we use the terminology quality

when referring to q in this article. Other examples of quality in a procurement setting

are the following. Think of delivery time as (the sole) component of quality and suppose

firms differ in production costs. In order to achieve a fast delivery time, firms might

have to break already signed contracts with other buyers and this would require them

to pay compensation to these other buyers. Consider the case where producers with

lower production costs were able to get more/bigger contracts with other buyers in the

past. If the penalties for breach of contract are sufficiently high, this implies that firms

2The literature on countervailing incentives, which is dicussed more thoroughly below, is the excep-
tion to this rule.
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with high production costs might have the lowest total cost –consisting of production

cost and penalty payments for breach of contract– for short delivery times, i.e. a high

quality project. For lower qualities (longer delivery time), however, the firms with low

production costs are cheaper as the long delivery time means that they do not have to

breach other contracts.

While the “specialization” in the previous example resulted from differences in out-

side options, such specialization can also be observed as a result of prior investments

in certain machines, technologies or employees. To illustrate, OMA is a leading in-

ternational partnership in architecture.3 Its projects include Parc des Expositions in

Toulouse, Il Fondaco dei Tedeschi in Venice and the Commonwealth Institute in Lon-

don. But this does not imply that OMA is a serious contender for designing your new

house or a small school.

Often the distinction between firms specialized in high quality and firms specialized

in low quality/low costs makes headlines in newly liberalized sectors. Examples of

sectors that have been liberalized over the past years are postal services, air transport

and railway. Some players compete with low prices and lower quality in, for instance, the

following sense: only make deliveries twice a week (instead of 6 days a week), operate

planes with reduced seat pitch and limited on board service as well as offering less

connections and use slow (i.e. not high speed) trains. Incumbents in these sectors tend

to be specialized in high quality at a high price because of pre-liberalization investments

and their organizational form. If high quality incumbents compete against entrants

specialized in low quality, which firm should win the procurement? How can a planner

best play off one specialized firm against another?

Put differently, what is the optimal way to procure when firms are specialized?

3See http://www.oma.eu/oma.
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Without specialization, the procurement literature cited above derives the following

well known principles: only the highest possible type produces his first best quality

(“no distortion at the top”), all other types’ quality is distorted in the same direction

(usually downward), all active types (except one) earn strictly positive rents and these

rents, welfare and the probability of winning increase in type.

Taking specialization into account changes these principles in a way analogous to

the countervailing incentives literature (see section 2).4 In particular, there can be more

than one firm with undistorted quality. We analyze a case where there are three such

types. We have no distortion at the top (for two types) and no distortion at the bottom.

In this case, the worst type is actually in the middle of the type space. Starting from

this type, we branch out to better types by moving both to lower and higher types.

Quality is distorted either upwards or downwards depending on whether the quality

a type is specialized in is below or above his first best quality. There is an interval

of types that produce their specialized quality: these types earn zero rents themselves

and do not generate information rents for other types. In fact, it is possible to have

all firms active –producing their specialized quality– without paying any (information)

rent; although this is not optimal in general. Finally, rents are U-shaped.

We show that in the optimal mechanism the (second best) efficient firm does not

necessarily win the procurement. This leads to new commitment problems for the

procurer. Further, the optimal mechanism cannot be implemented by standard scoring

rule auctions because such a scoring rule cannot discriminate between firms producing

their specialized quality level earning zero rents. We propose a dual score auction that

can implement the optimal mechanism in dominant strategies. With the optimal scoring

4The delivery time example above is typical for this literature which assumes that better firms, i.e.
those with lower production costs, have also better outside options.
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rule, initially the winning probability falls with the quality bid and then increases with

q.

The set up of the article is as follows. We first give a review of the literature. In

section 3, we present the model. Section 4 analyzes the case where first best welfare

is monotonically increasing in type whereas section 5 deals with U-shaped first best

welfare. In the latter case, we find a discrimination result, i.e. some types with lower

second best welfare are preferred to types with higher second best welfare. Section 6

shows that it is not possible to implement the optimal mechanism with a scoring rule

auction when specialization matters. We then propose an alternative way of implemen-

tation. Section 7 concludes. Proofs are relegated to the appendix. In the supplementary

material to this article, we show how the optimal mechanism can be derived if some of

the assumptions of section 3 do not hold.

2. Review of the literature

Our article is related to the literature on procurement, especially to those papers in

which more than price matters, e.g. Laffont and Tirole (1987), Che (1993), Branco

(1997) or Asker and Cantillon (2008). This literature shows how quality (or quantity)

is distorted away from first best for rent extraction purposes. It also analyzes how

simple auctions can implement the optimal mechanism. These papers assume that

firms are not specialized, i.e. higher types have lower costs for all quality levels. This

assumption seems to be too strong in many settings, e.g. the examples mentioned in

the introduction.

Asker and Cantillon (2010) are an exception in the procurement literature. They

analyze a model where firms differ in both marginal and fixed costs; each can be either
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high or low. Hence, there are four types. Which of the two mixed types has lower

overall costs depends on the quality level, i.e. firms are partially specialized although

this is not the main focus of their article. Our article shares some results with Asker and

Cantillon (2010), e.g. quality can be upward and downward distorted. In contrast, we (i)

analyze a situation of pure specialization, (ii) use more general cost functions, (iii) have

a continuum of one-dimensional types and (iv) propose an auction that implements the

optimal mechanism. This leads also to qualitatively new results, e.g. that the optimal

mechanism is second best inefficient.

Our paper is also related to Ganuza and Pechlivanos (2000) who analyze a pro-

curement model with horizontally differentiated firms. In their setting, it is costly for

firms to explore their own costs for a given quality (“design”). These exploration costs

are so high that the principal finds it optimal to set the desired quality level in a first

stage. Then firms explore their costs for this quality level and bid in a discriminatory

price auction in a second stage. They find that the optimal quality choice promotes

heterogeneity between firms, i.e. the quality choice favors the more preferred firm even

more but then the price auction discriminates against this firm. In our setting, firms

know their cost functions from the start and the quality level to be provided is therefore

not fixed ex ante. This leads to more conventional quality distortions that strengthen

weak types.

Our article connects the literature on competitive procurement with the literature on

countervailing incentives, see Lewis and Sappington (1989) and Maggi and Rodriguez-

Clare (1995) for the seminal contributions and Jullien (2000) for the most general

treatment. These papers analyze principal agent problems where higher types have

lower marginal costs (of quality) but higher fixed costs. By assuming that firms are

specialized, our model uses the same cost functions as the countervailing incentives
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literature. We contribute by allowing for several agents bidding for the contract whereas

the countervailing incentive literature focuses on settings with one principal and one

agent. That is, we put the countervailing incentives model in an auction context in the

same sense in which Laffont and Tirole (1987) do this with the standard monopolistic

screening model. Our result that the participation constraint is binding for a mass

of types is typical for the countervailing incentives literature. Also the distortions of

quality turn out to be the same as in the countervailing incentives model. Some of our

results cannot occur in a principal agent model and do not occur when the standard

monopolistic screening model is put into an auction context as in Laffont and Tirole

(1987), e.g. second best inefficiency of the optimal provider choice and our results on

scoring rule auctions. We also face new technical issues. For example, the standard

proof that local incentive compatibility implies global incentive compatibility does not

go through in our framework.

3. Model

We consider the case where a social planner procures a service of quality q ∈ IR+. The

gross value of this service is denoted by S(q) with Sq(q) > 0, Sqq(q) ≤ 0. The cost of

production is denoted by the three times continuously differentiable cost function c(q, θ)

where a firm’s type θ is private information of the firm. There are n firms and each

firm’s type is drawn independently from a distribution F on [θ, θ̄] which has a strictly

positive and differentiable density f .

To explain how our set up differs from standard models, define θs(q) as the type
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producing quality q at minimal costs:

θs(q) = arg min
θ∈[θ,θ̄]

c(q, θ) (1)

If type θs(q) is asked to produce quality q, the planner can pay this type c(q, θs(q));

this gives θs(q) zero rents and no other type can mimic θs(q) and earn rents. We say

that θs(q) is specialized in quality q. In a standard model, we get θs(q) = θ̄ for each

q > 0 whereas θs(0) = [θ, θ̄]. The highest type has lowest cost to produce any quality

q > 0. For any type θ < θ̄, the only way to reduce all rents to zero is to exclude it from

production (produce quality 0). We are interested in the case where there are interior

solutions for θs(q). We define k(θ) as the quality level in which type θ is specialized:5

θ = arg min
θ′∈[θ,θ̄]

c(k(θ), θ′) (2)

In words, if type θ produces quality k(θ), the planner can give θ zero rents and no other

type can mimic θ.

A tractable cost function that gives us this idea of specialization is given by

c(q, θ) = h1(q) + h2(θ)− αqθ (3)

where α > 0, h1 is strictly increasing and convex in q and h2 is convex in θ. Assumption

1 explains the features of this cost function and why we need them. We first go over

some examples to illustrate the range of models captured by this cost function.

Example 1. Assume that c(q, θ) = ν̄(θ) + (θ̄ − θ)q, where θ ∈ [0, θ̄] and the function

ν̄ ≥ 0 is increasing in θ. This is the countervailing incentives set-up of Lewis and

5Loosely speaking, we can think of k as the inverse of θs (θs(k(θ)) ≡ θ); but because θs can be
set-valued, we prefer not to pursue this formally.
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Sappington (1989) and Maggi and Rodriguez-Clare (1995), where in our model higher

θ implies lower marginal costs. We find k(θ) = ν̄ ′(θ).

Maggi and Rodriguez-Clare (1995) interpret ν̄(θ) as the value of a foregone outside

option and associate types with lower marginal costs with better outside options. This

setup can model the delivery time example in the introduction: ν̄(θ) is then the cost of

production whereas (θ̄− θ)q are the compensation payments to other buyers that have

to be made in order to be able to deliver a high quality, i.e. a short delivery time.

With this cost function we find that c(q, θ)/q is decreasing in q. That is, there is

no finite efficient scale where c/q is minimized as in figure 1. Similarly, returning to

the example of carbon dioxide abatement in power plants, marginal abatement costs

are increasing. Interpreting higher q as cleaner power, we need cqq > 0 to model this.

Different values of θ then refer to power companies with differing fractions of coal and

gas power stations and solar thermal electric plants etc. (Johnson et al., 2013; Steen,

2015; DNV, 2014).6 Example 1 does not allow for either of these cases, but equation

(3) does.

Example 2. Assume c(q, θ) = (q − θ)2 + q(1 − θ/2) where θ is distributed uniformly

on [0, 1]. Then we find that k(θ) = 4θ/5 and θs(q) = q/(1− q/4).

Figure 2 shows this cost function both as a function of q and as a function of θ.

Figure 2a draws c as a function of q for three values of θ = 0, 0.5, 1.0 and shows the

quality level k(θ) at which each θ is most efficient (marked by red dots). These quality

levels are given by k(θ) = 0, 0.4, 0.8 resp. Figure 2b draws c as a function of θ for these

three quality levels q = 0, 0.4, 0.8. Varying θ for these three values q, of course, shows

that c is minimized for θs(q) = 0, 0.5 and 1.0 resp.

6Note that the relevant information is the mix of the free capacity of the company. As contracts
between the company and other customers are usually confidential, our assumption that the principal
cannot observe the type seems reasonable in this example.
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[Figure 2 about here.]

Finally, the blue and red cost curves in figure 1 are based on this cost function with

θ = 0.5, 1.0 resp. Note that the value of q at which average cost c/q is minimized

(which equals θ for the function here) does not necessarily coincide with k(θ) which is

the value of q where type θ has lowest cost of all other types.

The cost function in this example can be seen as a combination of horizontal and

vertical differentiation. The former is captured by (q − θ)2. To see this, consider the

case where firms are distributed on a Hotelling line, where their “address” θ ∈ [0, 1]

gives the quality level that they can produce without any “transportation”/adjustment

costs. Producing q 6= θ involves quadratic transportation costs. The part q(1 − θ/2)

captures vertical differentiation: higher θ firms are better at producing each quality

level q. These two parts together model that firms are specialized.

Example 3. Assume c(q, θ) = 1
2
q2 − θq + θk. Thus, k(θ) = k.

This example, like example 1, reflects the idea that a firm with high fixed costs (θk)

has lower marginal costs (cq = q − θ) of producing quality. For example, a firm that

produces with a more capital intensive technology might have lower marginal costs for

quality but higher fixed costs. The difference with the first example is that here the

average cost curve is U shaped.

The following assumption specifies the properties of c in equation (3) and the prop-

erties of S and distribution function F that we use below.

Assumption 1. We assume that

• the function c(q, θ) satisfies cqq > 0, cqθ < 0, cθθ ≥ 0, cθθq = 0, cqqθ = 0,
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• for q ∈ IR+ it is the case that S(q) is high enough compared to c(q, θ) so that the

planner always wishes to procure (regardless of the type realization) and

• the function F satisfies the monotone hazard rate properties d((1−F (θ))/f(θ))
dθ

< 0

and d(F (θ)/f(θ))
dθ

> 0 .

These assumptions are standard in the literature. The first part says that c is convex

in q, higher θ implies lower marginal costs cq (the Spence-Mirrlees condition) and c is

convex in θ. Finally, cθθq = 0 and cqqθ = 0 (i.e. cqθ constant) enable us to exclude

stochastic contracts (e.g. a contract where player i’s quality depends on other players’

types) and will ensure that the standard monotonicity condition is satisfied. These

assumptions imply that the cost function can be written as equation (3).

To ease the exposition, we assume that it is always socially desirable for the service

to be supplied. A simple sufficient condition for this is S(k(θ)) − c(k(θ), θ) ≥ 0 for

each θ ∈ [θ, θ̄].7 The third part is the monotone hazard rate (MHR) assumption. This

assumption will allow us to use a first order approach by ensuring monotonicity of the

resulting solution. Usually this assumption is only made “in one direction”. However,

in the literature on countervailing incentives it is standard to have MHR “in both

directions”, see for example Lewis and Sappington (1989), Maggi and Rodriguez-Clare

(1995) or Jullien (2000).8

The assumption that cθθ = h′′2 ≥ 0 implies that we can characterize k(θ) in (2) with

the first order condition as

cθ(k(θ), θ) = 0. (4)

7If we do not make this assumption, the virtual surplus (see below) can turn negative and for some
realizations of θ the planner decides not to procure at all. Although straightforward to incorporate,
we want to stress that with specialization production can be guaranteed for any realization of θ with
zero rents.

8The normal, uniform and exponential distribution satisfy MHR. See Bagnoli and Bergstrom (2005)
for a more complete overview.
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Hence, we find that k(θ) = h′2(θ)/α.

The definition of k and assumption 1 lead to the following properties of k.

Lemma 1. The function k is increasing and differentiable in θ. Furthermore,

cθ(q, θ) = h′2(θ)− αq

 > 0 if q < k(θ)

< 0 if q > k(θ).

For high values of q, a higher type θ produces q more cheaply. This is the usual

assumption. We allow for the possibility where low values of q are actually more cheaply

produced by lower types. To illustrate, high type firms may have invested in (human)

capital that makes it actually relatively expensive to produce low quality. If the quality

of the product is mainly determined by the qualification of the staff, these firms might

have more expensive but also more qualified workers. Think of hiring OMA to build a

small school.

If k(θ) is close to zero for all types, our model reduces to a standard model as ana-

lyzed in the earlier literature. In this sense, our model encompasses earlier procurement

models. It is therefore not surprising that the solution of these earlier models shows up

as a special case of our solution (see case 1 in proposition 1).

As cθ can be both positive and negative, it is not clear how first best welfare varies

with θ. First best quality is defined as

qfb(θ) = arg max
q
S(q)− c(q, θ) (5)

which is uniquely defined as Sqq ≤ 0 and cqq > 0 by assumption 1. First best welfare is

denoted by

W fb(θ) = S(qfb(θ))− c(qfb(θ), θ). (6)
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Hence, we find that

dW fb(θ)

dθ
= −cθ(qfb(θ), θ). (7)

In a standard model dW fb/dθ > 0 (as cθ < 0) and the highest type is best from a first

best point of view. With cθ changing sign in our set up, a lot of shapes are possible for

W fb. For concreteness, we choose one of them here. We assume that W fb is quasiconvex

in θ. That is, we focus on the case where best types are either firms that specialize in

producing low quality cheaply or firms specializing in high quality.9 This is a tension

often seen in liberalized industries, as discussed in the introduction.

To get to quasiconvexity, we want −cθ(qfb(θ), θ) < 0 and hence qfb(θ) < k(θ)

for low θ and −cθ(qfb(θ), θ) > 0 and hence qfb(θ) > k(θ) for high θ. A necessary

and sufficient condition for this is that if qfb intersects k, it intersects from below

(qfbθ (θ) > kθ(θ) = h′′2(θ)/α). This can be written as follows.

Assumption 2. Assume that α
−Sqq(k(θ))+h′′1 (k(θ))

>
h′′2 (θ)

α
.

With this assumption, we get the following result.

Lemma 2. First best welfare W fb(θ) is quasiconvex in θ. There is at most one type,

denoted θw, at which qfb(θw) = k(θw). Furthermore, qfbθ (θw) > kθ(θw).10

By the quasiconvexity of W fb(θ) and dW fb(θw)/dθ = −cθ(k(θw), θw) = 0, it follows

that W fb is minimized at θw. From a first best point of view, θw ∈ [θ, θ̄] (if it exists)

is the worst type. Roughly speaking, types θ < θw are better because they are cheaper

and types θ > θw are better as they produce higher quality.

9Combining example 1 with lemma 1, we focuses on the case where k′(θ) = ν̄′′(θ) ≥ 0. This is
the cost function analyzed in section 4.1.1 of Maggi and Rodriguez-Clare (1995). The supplementary
material analyzes another case where types in the middle can be “best” which is related to 4.1.2 in
Maggi and Rodriguez-Clare (1995).

10With kθ ≥ 0 (lemma 1) and qfbθ (θw) > kθ(θw) we rule out cost functions related to figures 2 and 4
in Maggi and Rodriguez-Clare (1995).
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As first best welfare is quasiconvex in θ, we only need to consider two cases. Either

first best welfare is monotone in θ or it is first decreasing and then increasing in θ.

To ease the exposition, we will think of the highest type θ̄ as the best type, i.e. the

type with the highest first best welfare. It should, however, be noted that analysis and

results would not change if the lowest type was best (and by lemma 2 there are no other

cases). The two cases that we focus on in this article are therefore:

Definition 1. We consider the two cases:

(WM) first best welfare is monotone in θ: dW fb(θ)
dθ

> 0 for all θ ∈ [θ, θ̄] and

(WNM) a θw exists such that dW fb(θ)
dθ

< 0 for θ ∈ [θ, θw) and dW fb(θ)
dθ

> 0 for θ ∈ (θw, θ̄];

further W fb(θ̄) > W fb(θ).

WM is the case where qfb > k while qfb intersects k in WNM. Following lemma 2,

the only cases we neglect are therefore (i) k > qfb and W fb is decreasing and (ii) qfb

intersects k but W fb(θ) ≥ W fb(θ̄). These cases are, however, quite similar to WM and

WNM respectively and could be solved with the same methods.

Returning to examples 2 and 3 above, with the assumption that S(q) = q, we can

illustrate WM and WNM as follows. In example 2, we find that qfb(θ) = 5θ/4. First

best welfare is W fb(θ) = 9
16
θ2 which is increasing in θ ∈ [0, 1]. In example 3, with

k ∈ (1 + θ, 1 + θ̄), we find that qfb(θ) = 1 + θ and dW fb(θ)/dθ = 1 + θ− k. Hence, with

(k − 1) ∈ (θ, θ̄) first best welfare increases for θ > k − 1 and decreases for θ < k − 1.

Now we are able to set up the mechanism design problem. The planner only needs

one firm to supply the desired service or product. As n ≥ 2 firms are able to supply,

the planner needs to determine (i) which firm wins the procurement, (ii) what quality

level this firm supplies and (iii) how much money is transferred to firms in return.
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The planner offers a menu of choices for firms and each firm chooses the option that

maximizes its expected profits. The profits of a type θ firm if it has to provide quality

q with probability x and receives transfer t is t− xc(q, θ). The planner’s objective is to

maximize the expected value of S(q) minus the expected transfer payments to all firms.

Following Myerson (1981), we use a direct revelation mechanism. That is, we design

a menu of choices (qi(Θ), xi(Θ), ti(Θ))i=1...n meaning that firm i receives transfer ti(Θ)

and has to provide the quality level qi(Θ) with probability xi(Θ) if the vector of types

is Θ = (θ1, . . . , θn). The menu has to be designed such that it is incentive compatible

(IC). That is, it is optimal for each firm i to truthfully reveal its type θi given that all

other firms truthfully reveal their types.

If type θ misrepresented as θ̂, expected profits would be

πi(θ̂, θ) = E
θ−i

[
ti(θ̂, θ−i)− xi(θ̂, θ−i)c(qi(θ̂, θ−i), θ)

]
. (8)

With a slight abuse of notation we define the rent function πi(θ) as

πi(θ) = max
θ̂
πi(θ̂, θ).

Using an envelope argument, incentive compatibility requires

πiθ(θ) = E
θ−i

[
−xi(Θ)cθ(q

i(Θ), θ)
]

(9)

for almost all types. This equation makes sure that the first order condition for truthful

revelation is satisfied for type θ, i.e. it ensures that the derivative of (8) with respect

to θ̂ is zero when evaluated at θ̂ = θ.
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Example 1 (continued). IC takes the form

πθ(θ) = E
θ−i

[−xi(Θ)(q(Θ)− ν̄ ′(θ))] (10)

which corresponds to the IC constraint in Maggi and Rodriguez-Clare (1995) with two

exceptions. First, as we have competition between firms, there is the probability that i

wins the procurement (xi(Θ)) and potentially i’s quality depends on its own type θi as

well as the others’ types θ−i. Lemma 3 shows that qi does, in fact, not depend on θ−i.

This allows us to follow the countervailing incentives literature in intuition and proofs.

If (9) holds, we say that local IC is satisfied. It is well known in the procurement

literature (Laffont and Tirole, 1987) that local IC implies global IC under the usual

regularity conditions. The standard proof does, however, not apply in our framework

where firms are specialized: the constant sign condition ∂2πi/∂xi∂θ > 0 on which

this proof relies is not satisfied in our framework as cθ(q, θ) can change sign. We will

nevertheless first neglect non-local incentive constraints and use a first order approach;

we refer to this as the relaxed program. After deriving the solution to this program, we

verify that the non-local IC constraints do not bind under our assumptions. For the

remainder of this section, we refer with “optimal mechanism” to the optimal mechanism

of the relaxed program.

Finally, as firms can decide not to participate, a firm must have expected profits at

least as good as its outside option. Because cθ can switch sign, it is not clear for which

type(s) this constraint is binding. Hence, we need to explicitly track the individual

rationality constraint

πi(θ) ≥ 0 (11)

where we normalize firms’ outside option to zero. Using the definition of πi to substitute
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πi for ti, the principal’s relaxed program is therefore

max
(qi,xi,πi)i=1...n

E
Θ

{
n∑
i=1

[
xi(Θ)

(
S(qi(Θ))− c(qi(Θ), θi)

)
− πi(θi)

]}
(12)

subject to (9), (11) and the feasibility constraints xi(Θ) ∈ [0, 1] and
∑n

i=1 x
i(Θ) ≤ 1.

We proceed in three steps to solve this problem. First, we show that given any

feasible allocation rule (xi(Θ))i=1...n, the optimal qi depends only on i’s type θi. Second,

we show that for any given allocation rule (xi(Θ))i=1...n, the optimal (qi(θi))i=1...n is

independent of the allocation rule. Third, we derive the optimal allocation rule and rents

given the optimal (qi(θi))i=1...n derived in the second step. This three step procedure

is the same as used in Laffont and Tirole (1987) where the second step consists of a

problem that is similar to a countervailing incentives problem.

The following lemma establishes the first result: qi depends only on θi and not on

other firms’ types. Hence, we can write qi(θi) from here on. The intuition for this result

is the following. If qi depends on the types of the other firms, firm i is essentially facing

a stochastic contract. The mechanism designer can gain if she assigns the expected

quality (conditional on being contracted) to type θi instead of this stochastic scheme

because the objective in (12) is concave in qi. By the assumption cqqθ = 0, (9) is linear

in qi. Hence, assigning this expected quality will not affect (the slope of) the rent

function.

Lemma 3. The optimal quality schedule qi does not depend on θ−i.
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Using lemma 3, we can rewrite the objective in (12) as

E
Θ

{
n∑
i=1

[
xi(Θ)

(
S(qi(θi))− c(qi(θi), θi)

)
− πi(θi)

]}

=
n∑
i=1

∫ θ̄

θ

. . .

∫ θ̄

θ

[
xi(Θ)

(
S(qi(θi))− c(qi(θi), θi)

)
− πi(θi)

]
f(θ1) . . . f(θi−1)f(θi+1) . . . f(θn) dθ1 . . . dθi−1 dθi+1 . . . dθn f(θi) dθi

=
n∑
i=1

E
θi

[
X i(θi)

(
S(qi(θi))− c(qi(θi), θi)

)
− πi(θi)

]

where we use Fubini’s theorem and the fact that θi and θ−i are independent for the

first equality. For the second equality, we use the notation X i(θi) = Eθ−i xi(Θ), that is,

X i(θi) is the probability with which a type θi of firm i expects to be contracted. Note

that in the last expression the term in square brackets depends only on firm i and not

on types, qualities, selection probabilities or rents of other firms.

Now consider the problem of the second step where we take an arbitrary allocation

rule (xi(Θ))i=1...n – and therefore also all X i(θi) – as given. This second step maximiza-

tion problem (over (qi(θi), πi(θi))i=1...n) is then separable across firms as the objective

is a sum in which the ith summand depends only on firm i. That is, the maximization

problem over qi, πi in the second step for one particular firm i is

max
qi,πi

∫ θ̄

θ

f(θi)[X i(θi)(S(qi(θi))− c(qi(θi), θi))− πi(θi)] dθi (13)

subject to (9) and (11). This problem is similar to a problem of monopoly regulation. In

contrast to Laffont and Tirole (1987), (13) turns out to be a problem of countervailing

incentives because of our specialization assumption. We will show in the following

section (proposition 1) that the solution for qi in (13) does not depend on the choice
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rule (xi)i=1,...,n that we treated as given, i.e. the optimal qi is the same for any xi. This

allows us to plug this optimal qi into the principal’s objective and maximize – in the

third step – over the optimal choice rule (xi)i=1,...,n (and rents (πi)i=1...n). As objective

and constraints are linear in xi, it is not surprising that the optimal choice rule is based

on a suitably defined “virtual valuation”, i.e. the firm with the highest virtual valuation

is contracted.

For the following, it is useful to note that the optimal control function qi in problem

(13) has to maximize the Hamiltonian function H = f [X i(S − c)− πi] + λiX icθ where

λi(θi) denotes the costate associated with (9). The optimal qi will – for types where

Xi(θ
i) 6= 0 – then satisfy the first order condition

f(θi)(Sq(q
i(θi))− cq(qi(θi), θi)) + λi(θi)cqθ(q

i(θi), θi) = 0. (14)

The condition for optimal qi includes a first best welfare term (Sq − cq) and a rent

extraction term, i.e. increasing qi(θi) will increase the slope of the rent function by (9)

and cqθ < 0. If IC is binding downwards (upwards), this increases the rent for types

above (below) θi. As firms are specialized, it is not clear whether higher or lower types

are “better” and therefore upwards as well as downwards binding IC is possible. As

in Maggi and Rodriguez-Clare (1995), the following notation proves useful. Let qh(θ)

denote the solution to

Sq(q(θ))− cq(q(θ), θ) +
1− F (θ)

f(θ)
cqθ(q(θ), θ) = 0 (15)

and ql(θ) the solution to

Sq(q(θ))− cq(q(θ), θ)−
F (θ)

f(θ)
cqθ(q(θ), θ) = 0. (16)
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Put differently, qh is the solution to the first order condition (14) when λi(θi) = 1−F (θi)

–i.e. the IC constraint is binding downwards and increasing qi(θi) creates an information

rent for all types above θi– and ql is the solution to (14) if λi(θi) = −F (θi) –i.e. the

IC constraint is binding upward and increasing qi(θi) creates an information rent for all

types below θi. Note that ql ≥ qfb ≥ qh with strict inequality for all but the boundary

types as cqθ < 0.

The intuition follows the logic of the countervailing incentives literature. Firms θ

producing q(θ) > k(θ) have an incentive to report θ̂ < θ to pretend to have higher

costs (cθ < 0) and raise the transfer they receive. Firms θ producing q(θ) < k(θ) report

θ̂ > θ to raise their transfer (cθ > 0). The planner wants to prevent mimicking while

keeping information rents low. Hence, cqθ < 0 implies that q is distorted downwards in

the former case and upwards in the latter.

4. First best welfare monotone

We will now characterize the optimal mechanism for the WM-case. It turns out that

all firms are treated symmetrically which means that we can write q(θ) instead of qi(θ),

π(θ) instead of πi(θ) etc. There are two cases to consider. In the first case, the solution

(given by equation (15)) is similar to a setting where firms are not specialized. Put

differently, optimal qualities are so high above k(θ) that higher types have lower costs

in the relevant quality range. Consequently, the solution in this case is essentially the

solution of a standard problem known in the literature. In the second case, low types up

to a type θb ≥ θ have zero profits (but with different quality levels) and from θb onwards,

q(θ) follows qh. In this case, the assumption that firms are specialized is relevant: all

types below θb are assigned the quality k(θ) they are specialized in. In both cases, IC
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binds only downwards, i.e. high types would like to mimic low types (not the other way

around).

Proposition 1. The optimal mechanism treats all firms symmetrically, i.e. qi = q,

xi = x and πi = π for all i = 1, . . . , n. We define type θ’s virtual valuation as follows:

V V (θ) = S(q(θ))− c(q(θ), θ) +
1− F (θ)

f(θ)
cθ(q(θ), θ). (17)

There are two cases:

1. If cθ(q
h(θ), θ) < 0, then qh(θ) in equation (15) gives the optimal quality for all

θ ∈ [θ, θ̄]. Firm i with highest V V (θi) wins the procurement, i.e. xi(θi, θ−i) = 1

if V V (θi) > V V (θj) for all j 6= i. We have πθ(θ), qθ(θ), Xθ(θ) > 0 for each

θ ∈ [θ, θ̄].

2. If cθ(q
h(θ), θ) ≥ 0, then there exists a largest θb ≥ θ such that

q(θ) = k(θ) for all θ ∈ [θ, θb]

and θb is determined by the unique solution to

Sq(k(θb))− cq(k(θb), θb) +
1− F (θb)

f(θb)
cqθ(k(θb), θb) = 0. (18)

For all θ > θb, quality q(θ) = qh(θ). Firm i with highest V V (θi) wins the procure-

ment, i.e. xi(θi, θ−i) = 1 if V V (θi) > V V (θj) for all j 6= i. We have

π(θ) = 0 for all θ ∈ [θ, θb],

πθ(θ) > 0 for all θ ∈ (θb, θ̄], and

Xθ(θ), qθ(θ) ≥ 0 for all θ ∈ [θ, θ̄].
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The relaxed solution is globally incentive compatible.

The virtual valuation includes next to first best welfare (S − c) a rent extraction

term. Roughly speaking, contracting a type θi with a higher probability, i.e. increasing

xi(θi, θ−i), changes the slope of the rent function π(θ); see equation (9). If q(θi) > k(θi),

the rent function is increasing more steeply when xi(θi, θ−i) is increased. Hence, types

above θi will get a higher rent. 1 − F (θi) is the weight of the types that benefit from

this higher rent. But if firm i produces its specialized quality k(θi), no other firm can

mimic it profitably and hence the information rent disappears (as cθ(k(θ), θ) = 0). The

firm with the highest V V is contracted.

In the WM case, V V is increasing in type. Apart from MHR and WM, the fact

that firms are specialized is another reason for this: to say that firms are specialized

we used cθθ ≥ 0. This implies that the effect of marginally increasing the probability of

being contracted on the rents—i.e. on πθ in (9) bearing in mind that cθ(q(θ), θ) ≤ 0 in

the optimal mechanism—is smaller for higher types. This effect lets the principal prefer

higher types and hence the highest θ is contracted. Thus, the planner chooses the type

that generates the highest surplus; in this sense, the provider choice x is not distorted.

Quality q, however, is distorted. Although S− c would be maximized by qfb, this is

too expensive to implement. The IC constraint causes a downward distortion of quality

to reduce rents. There are two ways in which this can be done. First, the standard way:

qh as defined by equation (15). By reducing q(θ) below qfb(θ), S − c is reduced, but it

allows for a reduction of rents as it becomes less attractive for types θ′ > θ to mimic

θ. With specialized firms, there is a second way in which rents can be reduced: let θ

produce quality k(θ) with zero profits. No type can profitably mimic θ in this case. This

second option is clearly preferable to the first option if qh(θ) < k(θ) < qfb(θ) because
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k leads then to less distortion than qh without generating rents for higher types. In

this sense, distortion is limited (by k) if firms are specialized. This is the case for types

below θb. Given that the rent effect, i.e. cθ in IC, continuously approaches 0 as q → k,

it is not surprising that the first option is optimal whenever k(θ) < qh(θ) < qfb(θ) which

is the case for types above θb. Note that the quality distortion does not depend on the

number of firms. Hence, we obtain the same distortion as in the principal agent model

with countervailing incentives.11

In principle, the principal could guarantee production without paying rents (by

setting q(θ) = k(θ) for all θ). This is in contrast to standard models where rents can

only be reduced to zero by excluding types from production. This, of course, leads to a

risk that the service is not procured at all, depending on the draws of θ. Put differently,

guaranteeing the service leads to strictly positive rents in standard models but not in

our model. In this sense, the principal can extract more rents when firms are specialized

and still guarantee the service.

Another way to compare our results with the standard procurement model is to

compare case 2 of proposition 1 with the optimal menu in the hypothetical case where

the cost function is c(q, θ) = h1(q) + Eθ[h2(θ)] − αqθ instead of c(q, θ) = h1(q) +

h2(θ) − αqθ; i.e. all firms have the same fixed costs and there is no tradeoff between

marginal and fixed costs. This is a standard procurement model where the firm with

the highest type is contracted and qh is the optimal quality schedule. Furthermore,

rents are strictly increasing and only type θ has zero rents. It follows that also in this

sense having specialized firms leads to lower rents (for all types apart from θ) and less

quality distortion (for types below θb).

11To illustrate, if k′(θ) = 0, some types are also bunched on the same quality: see figure 1 in Maggi
and Rodriguez-Clare (1995) with k′(θ) = ν̄′′(θ) = 0.
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Example 2 (continued). Let S(q) = q such that qfb(θ) = 5θ/4 > 4θ/5 = k(θ). Equa-

tion (15) becomes

1− 2(q − θ)−
(

1− θ

2

)
+ (1− θ)

(
−5

2

)
= 0.

Hence, qh(θ) = max{0, 5θ/2−5/4}. Case 2 of proposition 1 applies because cθ(q
h(0), 0) =

0 ≥ 0. The qh function intersects k at θb = 25/34. Hence, the optimal quality schedule

is

q(θ) =


5
2
θ − 5

4
if θ ≥ 25

34

4
5
θ if θ < 25

34
.

The virtual valuation is

V V (θ) =


25
16
− 17

4
θ + 13

4
θ2 if θ ≥ 25

34

9
25
θ2 if θ < 25

34
.

As the virtual valuation is increasing in type, the firm with the highest type is contracted

which implies that X(θ) = θn−1 as types are uniformly distributed. Expected profits of

types θ ≤ 25/34 are 0. Expected profits for types higher than 25/34 are

π(θ) =

∫ θ

θb

−X(s)cθ(q(s), s) ds =
17

4(n+ 1)
θn+1 − 25

8n
θn +

25

8n(n+ 1)

(
25

34

)n
.

5. First best welfare non-monotone

In this section, we analyze the case where first best welfare is first decreasing and

then increasing in type. The lowest type θ is no longer worst (in a first best sense)

and therefore can have positive profits under the optimal mechanism. One can think

of the WNM case as having two standard menus. One for lower θ in which lower

types are better, the incentive constraint is upward binding, profits are decreasing in

24



type and quality is distorted upwards. The other for higher θ with higher types being

better, profits increasing in type, the incentive constraint downward binding and quality

distorted downwards.

The way to connect these two standard menus is an interval of types with zero profits

(but differing quality levels). Incentive compatibility within the zero profit interval is

no problem here: Each zero profit type θ will produce the quality level k(θ) at which he

has lower costs than any other type. The following proposition describes the optimal

menu in the WNM case.

Proposition 2. The optimal mechanism treats all firms in a symmetric way, i.e. qi =

q, V V i = V V and πi = π for all i = 1, . . . , n.

There exist θ1 and θ2, with θ1 < θ2, such that θ1 and θ2 are uniquely defined by ql(θ1) =

k(θ1) and qh(θ2) = k(θ2). Virtual valuation is given by

V V (θ) =


S(q(θ))− c(q(θ), θ)− F (θ)

f(θ)
cθ(q(θ), θ) if θ < θ1

S(q(θ))− c(q(θ), θ) if θ ∈ [θ1, θ2]

S(q(θ))− c(q(θ), θ) + 1−F (θ)
f(θ)

cθ(q(θ), θ) if θ > θ2.

(19)

Quality is determined by

q(θ) =


qh(θ) for all θ > θ2

k(θ) for all θ ∈ [θ1, θ2]

ql(θ) for all θ < θ1.

(20)

The firm with the highest V V (θ) is contracted, i.e. xi(θi, θ−i) = 1 if V V (θi) > V V (θj)
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for all j 6= i. We have

π(θ) = 0 for all θ ∈ [θ1, θ2]

πθ(θ) < 0 for all θ < θ1

πθ(θ) > 0 for all θ > θ2

qθ(θ) ≥ 0.

Type θw, who has the lowest first best welfare of all types, is in the zero profit interval

and produces his first best quality. It holds that

Xθ(θ) ≤ 0 for all θ < θw

Xθ(θ) ≥ 0 for all θ > θw.

The relaxed solution is globally incentive compatible.

[Figure 3 about here.]

Figure 3 illustrates proposition 2.12 It follows from lemma 2 that θw is the worst

type from a welfare point of view. Moreover, qfb(θw) = k(θw) implies that we can

implement qfb(θ) for θw without creating information rents (π(θw) = 0 and no other

type can profitably mimic θw). Hence, there is “no distortion at the bottom”. For

θ > θw, the quality schedule follows proposition 1: distort quality downwards to reduce

rents by choosing either k(θ) or qh(θ) depending on which yields higher welfare. The

switch from one to the other happens at θ2. At θ̄ we have “no distortion at the top”:

qh(θ̄) = qfb(θ̄).

12Similar figures appear in Maggi and Rodriguez-Clare (1995), see their figure 3 and 5. The reason
is that our quality distortion does not depend on the number of firms and is therefore the same as in
the setting with countervailing incentives.
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Consider θ < θw. Moving to the left from θw we move to types that are better than

θw. Types would like to mimic θ’s above them and IC constraints bind upwards. To

reduce rents, we need to distort quality upwards, i.e. q(θ) > qfb(θ): this follows from

(9) combined with cθ(q
fb(θ), θ) > 0 for θ < θw and cqθ < 0. There are two ways to do

this: either k(θ) or ql(θ) as defined in (16). Of these two, the quality level that is closest

to qfb(θ) is optimal; at θ1 we switch from one to the other. Finally, ql(θ) = qfb(θ): also

here we have “no distortion at the top”.

The selection rule for the winner of the procurement is based on V V . As welfare

is quasiconvex and cθθ ≥ 0, V V is also quasiconvex. The worst type θw has the lowest

probability of winning (X(θw) = 0). Moving either to the left or to the right from θw

increases the probability of winning as we move to better types. This non-monotonicity

of V V and X causes two new issues. In standard models and in case 1 of proposition

1, V V , welfare and profits are strictly increasing in type. Although the shapes of these

three functions differ, they all point in one direction: higher types lead to higher welfare,

higher probability of winning and higher profits. Thus, first, the outcome is ex post

efficient: the type generating the highest welfare wins. Second, the outcome is easy to

implement: the type with the highest profit wins and therefore letting firms bid in a

second price mechanism leads to a winner which generates the highest welfare. This is

not optimal in our model; we come back to this in the next section.

Equation (19) shows that second best welfare W sb(θ) = S(q(θ)) − c(q(θ), θ) differs

from V V (θ) by the information rent term. The planner, when assigning the contract, is

willing to deviate from efficiency to reduce rents. In particular, by playing out high types

against low types, the rents of high types can be reduced (and the other way around).

A similar result is well known in auctions with asymmetric bidders. Myerson (1981)

shows that it is optimal to discriminate between bidders drawing their valuations from
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different distributions. For example, if bidder A draws his valuation from a distribution

putting more weight on high values and bidder B draws from a distribution with low

values, the revenue maximizing auction will favor B. What is new in our case is that

there is only one distribution from which types are drawn: types are ex ante symmetric.

Discrimination in our model is due to different parts of the same distribution governing

the distortion: For low θ, the left tail is relevant and for high types the right tail of the

distribution matters for distortion.

The next result shows that it is not hard to find two types, where the winning type

is not the one generating highest second best welfare. That is, the optimal mechanism

is not second best efficient.

Corollary 1. The optimal allocation is not second best efficient in the sense that there

exist types θ′, θ′′ such that θ′ wins against θ′′ although W sb(θ′′) > W sb(θ′).

We discuss two implications of this result. First, as mentioned in the introduction,

the specialization of firms often comes to the fore in industries that are being dereg-

ulated. In many of these industries, incumbent firms used to invest a lot in quality

during regulation (for instance, because the regulation scheme in place stimulated this

with subsidies). After deregulation, new firms come in which provide low quality at a

low cost. The incumbents then tend to complain that procurement is biased toward

low costs. In a standard set-up, this does not make sense: the high quality winner is

more efficient at every quality level. In our set-up, it is possible that a high quality

firm generates higher surplus in the optimal mechanism but loses against a low cost

competitor.

In other words, although in second best a high type generates higher quality and

higher welfare than some low type, it can happen that the low type wins the procurement
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contract. Incidentally, the opposite can happen as well: a high type wins from a low

type although the latter generates higher (second best) welfare.

Second, this result reiterates that commitment is important. In standard models,

commitment is important when it comes to quality. The mechanism induces firms to

reveal their type. Once types are known, there is an incentive for planner and firm to

renegotiate quality to move closer to first best. Commitment is needed to prevent this.

In addition to this, we have a commitment problem with respect to selecting the winner.

Once the planner knows firms’ types, she may want to choose the one that yields highest

(second best) welfare, however this is not optimal from an ex ante perspective.

6. Scoring rule auctions

A scoring rule auction is a procurement mechanism in which the principal designs a

scoring rule and the firm bidding the highest score is contracted. A scoring rule is a

function which assigns to each price/quality pair a real number that is called the“score”.

If price enters this function linearly, the scoring rule is said to be quasilinear. A second

score auction is a straightforward extension of the famous Vickrey auction: The highest

bidder is contracted and has to provide a quality/price combination resulting in the

second highest score bid.

Scoring rule auctions are used in practice and have also received attention in the

academic literature, see Asker and Cantillon (2008). Arguably, the procurement guide-

lines of the European Union favor scoring rules. If the procurement procedure is based

on the concept of “best economic value”, the procurement agency has to publish the

relative weighting of the different criteria ex ante. Hence, the procurement mechanism

will resemble a scoring rule auction.13 Furthermore, Che (1993) shows that the optimal

13The guidelines allow for one alternative to the concept of best economic value: the criterion of
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mechanism in a standard procurement model is implementable through a quasilinear

second score auction. We will show that this result does not necessarily hold when firms

are specialized even when we allow for general scoring rule auctions. We will then in-

troduce an extended scoring rule auction which can implement the optimal mechanism

with specialized firms.

In a second score auction, it is a dominant strategy to bid the highest score one can

provide at non-negative profits. Denoting the scoring rule by s(q, p), a firm of type θ

will therefore have the bid

bid(θ) = max
p,q

s(q, p) s.t. : p ≥ c(q, θ). (21)

Naturally, the constraint will be binding and therefore we can write

bid(θ) = max
q
s(q, c(q, θ)).

Using the envelope theorem, bids change in type according to

bidθ(θ) = sp(q(θ), c(q(θ), θ))cθ(q(θ), θ). (22)

The last equation implies that bidθ(θ) = 0 for all types with q(θ) = k(θ). Recall that

the optimal mechanism assigns q(θ) = k(θ) to the types in the zero profit interval.

Hence, all types with zero profits will have the same bid in a scoring rule auction

implementing the optimal quality schedule. However, in the optimal mechanism as

described in propositions 1 and 2, types in the zero profit interval typically have different

virtual valuations and therefore different probabilities of being contracted.

In the appendix, we show that a similar reasoning also holds in first score auctions

“lowest price”. Such a focus on price is clearly not optimal when quality matters.
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which leads to the following result.

Proposition 3. Generically, a scoring rule auction cannot implement the optimal

mechanism in the WNM case. In the WM case, scoring rule auctions cannot implement

the optimal mechanism in case 2 of proposition 1.

In short, standard scoring rule auctions usually do not work when firms are special-

ized. Another way to implement the optimal mechanism in the non-specialized setup

is to have a second price auction for the right to be regulated as a monopolist. That

is, the procurement agency commits to the optimal regulation menu for the monopoly

case and the winner of the second price auction can pick a quality/transfer pair from

this menu. Again this does not work when firms are specialized. For instance, all types

in the zero profit interval would bid zero in the second price auction. Hence, the pro-

curement agency would have to treat those types in the same way although they have

different virtual valuations in the optimal mechanism.

As indicated above, the main problem is that scoring rule auctions cannot discrim-

inate between types with zero profits. This suggests that, at least, a tie breaking rule

is needed to implement the optimal mechanism. In the following, we propose such an

extended scoring rule auction. Our dual-score auction with tie breaking works in the

following way. We use a simplified scoring rule auction in which firms bid a quality and

a minimum price at which they are willing to provide this quality.14 The principal sets

up two scoring rules –A,B– and depending on whether the quality is below or above

q(θw) a firm’s bid is evaluated with scoring rule A or B. The firm with the highest score

is contracted and has to provide the quality it bid. The price is determined as in a

Vickrey auction: It is the price that yields the same score as the second highest score.

14In an earlier version of this paper, we presented a slightly more complicated auction that imple-
mented the optimal mechanism in which firms bid a score without comitting to a quality.
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As indicated above, types in the interval [θ1, θ2] will have the same score in this auction.

To break ties, the auctioneer uses the following rule: The bidder whose bid quality q

maximizes V V (q−1(q)) wins where V V and q−1 refer to the virtual valuation and the

inverse of the quality function in the optimal mechanism derived in propostions 1 and

2.15

This means that the auctioneer has to announce the two scoring rules, the quality

level q(θw) and the tie-breaking rule based on the virtual valuation. The scoring rules

are designed in a way that will ensure that each type finds it profit maximizing to

bid the optimal quality. We use the scoring rules sA(q, p) = G (S(q)− p+ ∆(q)) and

sB(q, p) = S(q)− p + ∆(q) where G is a strictly increasing function determined in the

appendix and16

∆(q) =



∫ q
q(θ)

λ(q−1(s))
f(q−1(s))

cqθ(s, q
−1(s)) ds for q ∈ [q(θ), q(θw)]∫ q

q(θw)
λ(q−1(s))
f(q−1(s))

cqθ(s, q
−1(s)) ds for q ∈ (q(θw), q(θ̄)]

−∞ else.

(23)

Because of the Vickrey design, it is dominant to bid c(q, θ) as minimum price where

q is the quality the firm bids. In case of winning, a firm has profits of S(q)+∆(q)−D−

c(q, θ) where D is a constant that depends only on the second highest score.17 Note that

the quality q maximizing these profits also maximizes the firm’s score given that the bid

price equals c(q, θ). As the same quality maximizes the probability of winning as well

as the profits conditional on winning, it is a dominant strategy to bid this quality. The

scoring rule is designed such that this quality is exactly the quality from the optimal

15Bids using qualities that are not in [q(θ), q(θ̄)] are loosing.
16Recall that λ(θ) is defined as −F (θ) if θ < θ1, 1 − F (θ) if θ > θ2 and as the unique solution to

Sq(k(θ))− cq(k(θ), θ) + λcqθ(k(θ), θ) = 0 for θ ∈ [θ1, θ2].
17D will be either score(2) or G−1(score(2)) depending on whether the winning firm bids a quality

above or below q(θw).
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mechanism. It turns out that the firms’ rents in the auction are the same as in the

optimal mechanism which leads to the following result.

Proposition 4. The optimal mechanism can be implemented in dominant strategies by

the dual-score auction with tie breaking described above.

Clearly our dual score auction with tiebreaking is somewhat more complicated than

a standard scoring rule auction. Interestingly, the added complication is mainly on the

side of the auctioneer. Firms have a dominant strategy and compute their optimal bids

in exactly the same way as in standard scoring rule auction. The added complication

derives from the tie-breaking rule and the more complicated scoring rule. The exact

tie-breaking rule is, however, quite irrelevant for firms: Ties only occur (with positive

probability) for types that earn zero profits whenever they win. Consequently, these

types are indifferent between winning and losing and do not have to care about the

details of the tie-breaking rule. The scoring rule is not really more complicated in itself,

i.e. it is still a function mapping qualities and prices into scores. The only complication

is that it is a composite function piecing together two standard scoring rules. Again

the complication is on the auctioneer’s side while it makes little difference for the firms

whether the auctioneer arrived at the rule in one or two steps.

The dual score auction also illustrates the additional commitment problem we dis-

cussed in section 5: Even if we abstract from the possibility to renegotiate qualities and

prices, the auctioneer might want to accept a different bid than the one winning accord-

ing to the auction rules. The reason is that two firms might be evaluated according to

different scoring rules. Although types with a higher score will lead to a higher payoff

for the auctioneer within scoring rule A and within scoring rule B, the opposite might

be true when comparing types that are not both evaluated using the same rule. This
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is, again, an additional complication on the auctioneer’s side.

Example 2 (continued). In the WM case, the dual-score auction with tiebreaking re-

duces to a single-score auction with tiebreaking or, put differently, θw = θ. The optimal

score is then s(q, p) = q − p+ ∆(q) where (for q ∈ [q(θ), q(θ̄)] )

∆(q) =

∫ q

q(θ)

λ(q−1(s))

f(q−1(s))
cqθ(s, q

−1(s)) ds.

Plugging in the optimal mechanism derived earlier, gives18

∆B(q) =


− 9

16
q2 if q ∈ [0, 10

17
)

25
68

+ 1
2
q2 − 5

4
q if q ∈ [10

17
, 5

4
]

−∞ else.

In the second score auction, it is a dominant strategy to bid the quality maximizing the

score one can deliver at zero profits, i.e. maxq q−c(q, θ)+∆(q). Note that this maximiza-

tion problem is strictly concave on [0, 5/4] and the objective is continuously differentiable

(even at 10/17). If the arg max to this maximization problem is in [0, 10/17), the first

order condition gives q(θ) = 4θ/5 = k(θ) (which is the optimal q for θ < 25/34). If the

arg max is in [10/17, 5/4], the first order condition gives q(θ) = 5θ/2− 5/4 which is the

optimal q for θ ≥ 25/34. In fact, the arg max is below 10/17 if and only if θ < 25/34.

For θ < 25/34, we get a score of 4θ/5−(θ2/25+4θ/5−2θ2/5)−9θ2/25 = 0 whereas the

scores for higher types are positive and increasing in type. Hence, all types θ < 25/34

have the same bid. In case all firms have types below 25/34, the tie breaking rule chooses

the highest type.

As the dual-score auction can implement the optimal mechanism, let’s return to

18λ can be derived from (14) using the optimal q. This gives λ(θ) = 1 − θ for θ ≥ 25/34 and
λ(θ) = 9θ/25 for θ < 25/34.
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our green energy example to see the consequences of technological progress. Innovation

tends to make green energy like solar and wind energy cheaper. Hence, it becomes

more attractive for firms to invest in such energy sources. The question is: how do the

government’s procurement rules react to these developments? At first sight, one may

think that such green technological developments lead to “greener” procurement rules.

In fact, they do not.

Think of such technological progress as increasing firms’ θ over time. For concrete-

ness, assume that f(θ) = aθ + 1 − 1
2
a and F (θ) = 1

2
aθ2 + (1 − 1

2
a)θ for θ ∈ [0, 1]

and a ∈ [0, 2]. We interpret an increase in a as green innovations becoming available

over time. It is routine to verify that F (θ)/f(θ) falls with a whereas (1 − F (θ))/f(θ)

increases with a. It follows from proposition 2 that q(θ) falls for all θ < θ1 and for

all θ > θ2 while leaving q(θ) unaffected for θ ∈ [θ1, θ2]. Hence, the procurement rules

reduce the quality demanded from a given type θ. Further, equation (19) shows that

V V follows the same pattern.19

Summarizing, the government’s rules bias against green technologies the more such

technologies become available. A given type θ is required to provide lower quality and

higher types are less likely to win. This may be hard to explain to environmental groups

that argue that government rules should embrace green technologies, the more these

become available.20

Further, from a dynamic perspective, if the government would like to stimulate firms

to invest in green technologies it should deviate from the static optimal procurement

rules derived above. Indeed, following these rules introduces a bias against high θ firms,

19As a increases, F/f increases and (1 − F )/f falls while cθ > 0 for θ < θ1 and cθ < 0 for θ > θ2.
There is also the indirect effect of a on q(θ) but by the definition of qh,l in equations (15, 16) this only
has a second order effect on V V .

20As a technical point, without specialization the effect of (1− F )/f on quality q would be present
as well, but a change in a would not affect the choice of the winner.
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making it less attractive for firms to upgrade their θ. Again this requires commitment.

The government should specify ex ante its energy procurement rules for each of the

coming years in which it plans to procure electric power.

7. Conclusion

We analyzed a procurement setting in which the procurement agency cares not only

about the price but also about the quality of the product. In the introduction we

gave some examples where a firm is more efficient than another firm in producing some

quality level but not necessarily in all quality levels.

Standard procurement models do not account for this possibility because “type”

denotes efficiency and not how a firm is specialized. Put differently, a more efficient

type produces cheaper at any quality level. We relax this assumption and allow each

type to be specialized, i.e. to be the most efficient type for some quality level. This

leads to a bunching of types on zero profits. The intuition is that distorting quality

further than the quality level a type is specialized in (for rent extraction reasons) is not

necessary: A type producing “his quality level” with expected profits of zero cannot be

mimicked by any other type. Hence, the incentive constraint is slack and an interval of

zero profit types is feasible. In short, distortion is limited and more rents are extracted

if firms are specialized.

If we assume that first best welfare is U-shaped, e.g. there are gains from being

specialized in low costs even from a welfare point of view, we get an interesting dis-

crimination result. Types with lower second best welfare can be preferred to types with

higher second best welfare. This is similar to auctions with asymmetric bidders where

discriminatory mechanisms are well known. The commitment to favor some worse types
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allows the principal to reduce the rents of the best types. Put differently, competitive

pressure can be exerted even by firms that are clearly worse. Further, “gold plating”

can be optimal in the sense that some types produce quality levels above their first

best levels. Finally, high quality firms can lose against low quality firms offering lower

(second best) welfare. A complaint that is often heard in newly liberalized sectors.

Optimal mechanisms as the one derived in this article are usually not implemented

one-to-one in reality. This makes our qualitative results on implementation especially

relevant. First, the discrimination result mentioned above implies that the commitment

problem of the principal is more severe when firms are specialized: As the optimal

mechanism is second best inefficient, the principal might ex post want to contract

another firm than the one the optimal mechanism demands. This commitment problem

is in addition to the standard commitment problem; i.e. the principal would like to

renegotiate quality and price after learning the firms’ types. Second, standard scoring

rule auctions cannot implement the optimal mechanism when firms are specialized. The

main problem is that all the types with zero expected rents will have the same bid in

such a scoring rule auction. In standard mechanism design problems there is only one

active type with zero rents. Here we have a range of such types. Therefore, well specified

tie breaking rules become crucial when firms are specialized.
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Appendix

Proof of lemma 2 From the first order condition for qfb, we derive that

qfbθ =
α

−Sqq(qfb(θ)) + h′′1(qfb(θ))
> 0.

Hence, qfbθ (θ) > kθ(θ) at a type where qfb(θ) = k(θ) if and only if

α

−Sqq(qfb(θ)) + h′′1(qfb(θ))
>
h′′2(θ)

α

which holds by assumption 2. Hence, qfb can intersect k at at most one type and

only from below. The type at which qfb(θ) = k(θ) is denoted by θw. As W fb
θ (θ) =

−cθ(qfb(θ), θ), this implies that W fb has to be first de- and then increasing if qfb in-

tersects k and W fb has to be monotone if qfb does not intersect k; see lemma 1. This

implies quasiconvexity. Q.E.D.

Proof of lemma 3 Take a direct mechanism consisting of rents (πi)i=1,...,n, choice

rules (xi)i=1,...,n and quality schedules (qi)i=1,...,n. Pick one particular i and suppose that

qi depends on θ−i. We will now show that we can use q̂(θi) =
Eθ−i [x

i(Θ)qi(Θ)]

Eθ−i [x
i(Θ)]

instead of

qi. Clearly q̂i depends only on θi and we will show that (i) rents stay the same, (ii)

incentive compatibility still holds, (iii) the principal’s objective is weakly higher when

using q̂i instead of qi.

First, we show that the slope of the rent function (i.e. first order incentive compat-

ibility) stays the same. Cost function c(q, θi) = h1(q) + h2(θi) − αθiq implies that (9)

can be written as

πiθ(θ
i) = Eθ−i [−xi(Θ)h′2(θi) + xi(Θ)αqi(Θ)].
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Using the definition of q̂i we get

πiθ(θ
i) = Eθ−i [−xi(Θ)h′2(θi) + xi(Θ)αqi(Θ)]

= Eθ−i [−xi(Θ)h′2(θi)] + αq̂i(θi)Eθ−i [x
i(Θ)] = Eθ−i [−xi(Θ)h′2(θi) + αq̂i(θi)xi(Θ)]

= Eθ−i [x
i(Θ)cθ(q̂

i(θi), θi)].

Put differently, (9) still holds if we use q̂i instead of qi (while keeping the same (xi)i=1,...,n).

The mechanism (q̂i, xi, πi)i=1,...,n is therefore feasible in the relaxed program. Note that

this mechanism satisfies the participation constraint because the original mechanism

(qi, xi, πi)i=1,...,n was assumed to do so.

Note that q̂i is basically the expected quality provided by firm i in the original

mechanism. Given that the principal’s valuation is concave and costs are convex, it

is therefore not surprising that the principal’s objective S − c − π is (weakly) higher

when using q̂i instead of qi. More formally, write the principal’s objective in the relaxed

program as

n∑
i=1

∫
θi
Eθ−i [x

i(Θ)
(
S(qi(Θ))− c(qi(Θ), θi)

)
]− πi(θi)dF (θi).

Now the integrand (for a given θi) is concave in qi by assumption. This implies that

substituting the expected qi, i.e. q̂i, instead of qi will increase the integrand. As this is

true for any given θi, it is also true when we integrate over θi. In detail, define K(q, θi) =

(S(q)− c(q, θi))Eθ−i [xi(Θ)] and note that K is concave in q by our assumptions on

S and c. Let Hθi denote the distribution over [θ, θ̄]n−1 that has density hθi(θ
−i) =

f(θ1) ∗ · · · ∗ f(θi−1) ∗ f(θi+1) ∗ · · · ∗ f(θn) ∗ xi(θi,θ−i)

Eθ̃−i [x
i(θi,θ̃−i)]

. Taking expectations with

respect to Hθi will be denoted by EHθi . Note in particular that q̂i(θi) = EHθiq
i(θi, θ−i)
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by the definition of q̂i. Then, the principal’s objective can be written as

n∑
i=1

∫
θi
Eθ−i

[
xi(θi, θ−i)

Eθ̃−i [x
i(θi, θ̃−i)]

K(qi(Θ), θi)

]
− πi(θi) dF (θi)

=
n∑
i=1

∫
θi

∫
[θ,θ̄]n−1

K(qi(Θ), θi)dHθi − πi(θi) dF (θi)

=
n∑
i=1

∫
θi
EHθi [K(qi(Θ), θi)]− πi(θi) dF (θi) ≤

n∑
i=1

∫
θi
K(EHθi [q

i(Θ)], θi)− πi(θi) dF (θi)

=
n∑
i=1

∫
θi
K(q̂i(θi), θi)−πi(θi) dF (θi) =

n∑
i=1

∫
θi
Eθ−i [x

i(Θ)]
(
S(q̂i(θi))− c(q̂i(θi), θi)

)
−πi(θi)dF (θi)

=
n∑
i=1

∫
θi
Eθ−i [x

i(Θ)
(
S(q̂i(θi))− c(q̂i(θi), θi)

)
]− πi(θi)dF (θi)

where the inequality follows from the fact that K is concave in q and the last step is true

because no term in S(q̂i(θi)) − c(q̂i(θi), θi) depends on θ−i. The last expression is, of

course, the principal’s payoff when using the mechanism (q̂i, xi, πi)i=1,...,n. Consequently,

the principal can achieve an at least as high payoff by using q̂i which depends only on

θi as she can by using a qi that depends on θ−i (in the relaxed program). As i was

arbitrary, this concludes the proof. Q.E.D.

Proof of proposition 1 The structure of this proof is similar to Laffont and Tirole

(1993, pp. 315). The only difference is that we solve a countervailing incentive problem

instead of a standard principal agent problem in order to obtain the optimal qi. In a

first step, we will determine the optimal qi for a given xi. In a second step, we determine

then the optimal xi.

Following lemma 3, qi depends on θi only. For a given xi(·) (and therefore a given

X i(·)), the principal’s maximization with respect to qi (12) can then be written as

max
(qi,πi)i=1...n

n∑
i=1

E
θi

{[
X i(θi)

(
S(qi(θi))− c(qi(θi), θi)

)
− πi(θi)

]}
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subject to (9) and (11). As X i is given for the moment, the maximization problem is

separable across firms, i.e. the maximization over qi and πi does not depend on qj, πj

or θj for j 6= i. Hence, we can treat the maximization for firm i separately which then

becomes

max
qi,πi

∫ θ̄

θ

[
X i(θ)

(
S(qi(θ))− c(qi(θ), θ)

)
− πi(θ)

]
f(θ) dθ (24)

subject to

πiθ(θ) = −X i(θ)cθ(q
i(θ), θ)

πi(θ) ≥ 0.

This is an optimal control problem where qi is the control and πi is the state variable.

To show that the quality schedule proposed in the proposition solves this problem,

we use a sufficiency result for optimal control problems with pure state constraints

(Seierstad and Sydsaeter, 1987, Thm. 1, ch. 5.2; adjusted to our notation) :

Theorem 1. Let (q∗, π∗) be an admissible pair in problem (24). Let λi : [θ, θ̄] → R

be a continuous and piecewise continuously differentiable function and ηi : [θ, θ̄]→ R+

be a piecewise continuous function such that ηi(θ)π∗(θ) = 0 for all θ ∈ [θ, θ̄]. If the

following properties are satisfied, (q∗, π∗) solves problem (24):

• q∗ maximizes H(π∗(θ), q, λi(θ), θ) = f(θ) [X i(θ)(S(q)− c(q, θ))− π(θ)]+λi(θ)X i(θ)cθ(q, θ)

for every θ ∈ [θ, θ̄]

• λiθ(θ) = −f(θ) + ηi(θ)

• λi(θ̄)π∗(θ̄) = λi(θ)π∗(θ) = 0,λi(θ̄) ≥ 0 and λi(θ) ≥ 0

• H(π, q∗(θ), λi(θ), θ) = f(θ) [X i(θ)(S(q∗(θ))− c(q∗(θ), θ))− π]+λi(θ)X i(θ)cθ(q, θ)

is concave in π for all θ.
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We immediately turn to case 2 of the proposition as the proof of case 1 resembles

the proof of case 2 for types θ > θb. Before turning to the conditions of the theorem,

we establish that θb is unambiguously defined. Note that the left hand side of (18) is

increasing in θb as—by assumptions 1-2—its derivative can be written as

cqθ(k(θ), θ)

(
−1 +

(−Sqq(q(θ)) + cqq(k(θ), θ))cθθ(k(θ), θ)

c2
qθ(k(θ), θ)

+
d1−F (θ)

f(θ)

d θ

)
> 0

Hence, θb is uniquely defined by (18). Note that this implies that qh intersects k only

at type θb and that qh(θ) > (<)k(θ) for all θ > (<)θb.

To check the conditions of the theorem, we propose λi(θ) = 1−F (θ) and q(θ) = qh(θ)

for θ ≥ θb and let λi(θ) be implicitly (and uniquely) defined by (14) and q(θ) = k(θ) for

θ < θb. Thus we propose that λi, qi are independent from the chosen X i (or xi). We

show that this is consistent with the optimality requirements of the theorem.

For πi we propose πi(θ) = 0 for θ ≤ θb and πi(θ) =
∫ θ
θb
−X i(θ̃)cθ(q(θ̃), θ̃) dθ̃ for

θ > θb. Thus, πi does depend on the choice of X i and these will be determined jointly.

For the proposed q, Hq(π
∗(θ), q(θ), λ(θ), θ) = 0. As Hqq < 0 by the assumptions

Sqq ≤ 0, cqq > 0 and cqqθ = 0, the first requirement of the theorem is met.

Note that the proposed λi is continuous by the definition of θb and the continuity

of c, S and f . Because we assumed that f is a C1 function, S is a C2 function and c is

a C3 function, λi is continuously differentiable at all types with the possible exception

of θb. Furthermore, λi does not depend on X i nor on the firm identifier i and we can

therefore write λ without the firm identifier i.

To check the second condition of the theorem, define η(θ) (which also does not
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depend on X i nor on the firm identifier i) as

η(θ) =


0 for θ ≥ θb

λθ(θ) + f(θ) otherwise.

This clearly satisfies the second condition and piecewise continuity but it remains to

check that η(θ) ≥ 0 for all θ < θb. This is done in two steps:

First, in the WM case, dW fb/dθ = −cθ(qfb(θ), θ) > 0 and therefore qfb(θ) > k(θ).

This implies together with qh(θ) < k(θ) for all θ < θb that qh(θ) < k(θ) = q(θ) < qfb

for types θ < θb. Therefore, λ(θ) ∈ (0, 1− F (θ)) for θ < θb.

Second, differentiating (14) with respect to θ evaluated at q(θ) = k(θ), yields—after

plugging in kθ = −cθθ/cqθ—for types θ < θb:

cqθ(k(θ), θ)

(
−1 +

(−Sqq(q(θ)) + cqq(k(θ), θ))cθθ(k(θ), θ)

c2
qθ(k(θ), θ)

+
dλ(θ)
f(θ)

d θ

)
= 0. (25)

By assumption 2 –with cqθ = −α, cθθ = h′′2, cqq = h′′1– the sum of the first two terms in

brackets is negative. Hence, the third term has to be positive. This implies λθ(θ) ≥

λ(θ)fθ(θ)/f(θ). Therefore, we get

η(θ) ≥ 1

f(θ)

(
f 2(θ) + λ(θ)fθ(θ)

)
≥ 0

where the second inequality follows from MHR and λ(θ) ∈ (0, 1− F (θ)).

The last two conditions of the theorem are clearly met: λ(θ̄) = π(θ) = 0 and H is

linear (and therefore concave) in π.

Hence, we showed that the quality schedule in the proposition is optimal and derived

the optimal λ (for any given selection rule (xi)i=1...n). Both q and λ do not depend on

firm identifier i nor the given xi.
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Under the optimal q, q(θ) = qh(θ) > k(θ) for θ > θb and q(θ) = k(θ) for θ < θb.

(9) implies then πiθ(θ) = 0 for θ < θb and πiθ(θ) > 0 for θ > θb. Hence, (11) is binding

in the optimal mechanism for θ if and only if θ ≤ θb. For a given xi, the optimal

rents πi(θ) for θ ≥ θb are therefore given by
∫ θ
θb
−X i(θ̃)cθ(q(θ̃), θ̃) dθ̃ as we proposed

above. As cθ(q(θ), θ) = 0 for θ ≤ θb under the optimal q, we can equivalently write

πi(θ) =
∫ θ
θ
−X i(θ̃)cθ(q(θ̃), θ̃) dθ̃.

When solving for the optimal decision rule xi we can therefore plug πi(θi) =∫ θi
θ
−X i(θ̃)cθ(q(θ̃), θ̃) dθ̃ into the principal’s objective. Also plugging in the optimal

q derived above, the principal’s problem becomes

max
(xi)i=1...n

∫
Θ

{
n∑
i=1

[
xi(Θ)

(
S(q(θi))− c(q(θi), θi)

)
+

∫ θi

θ

X i(θ̃)cθ(q(θ̃), θ̃) dθ̃

]}
f(θ1) . . . f(θn) dΘ

subject to the feasibility constraints xi(Θ) ≥ 0 and
∑

i x
i(Θ) ≤ 1 for all Θ. Using

integration by parts and X i(θi) = EΘ−i x
i(Θ), we eliminate the inner integral and get

max
(xi)i=1...n

∫
Θ

{
n∑
i=1

[
xi(Θ)

(
S(q(θi))− c(q(θi), θi) +

1− F (θi)

f(θi)
cθ(q(θ

i), θi)

)]}
f(θ1) . . . f(θn) dΘ.

As this expression is linear in each xi, it is optimal to contract the firm i, i.e.

set xi(Θ) = 1, for which the virtual valuation V V (θi) ≡ S(q(θi)) − c(q(θi), θi) +

1−F (θi)
f(θi)

cθ(q(θ
i), θi) is highest.21

It remains to show the monotonicity results in proposition 1. Monotonicity of q

follows from kθ = −cθθ/cqθ ≥ 0 for θ ≤ θb. For types θ > θb, qθ(θ) > 0 holds as qhθ > 0

under assumption 1 (by MHR and cqqθ = cqθθ = 0). The virtual valuation is increasing

21If the virtual valuation of all firms happens to be below 0, it is optimal not to procure. We ignore
this case as, by assumption 1, S is high enough such that it is always optimal to procure.
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in type as

d V V

dθ
= −cθ(q(θ), θ)

(
1−

d1−F (θ)
f(θ)

dθ

)
+ cθθ(q(θ), θ)

1− F (θ)

f(θ)
≥ 0 (26)

where the inequality holds because the term in brackets is positive by MHR for θ > θb.

The inequality holds strictly for θ > θb and also for θ ≤ θb if cθθ > 0.

Global incentive compatibility of the solution in the relaxed program is shown in

lemma 4 below. Q.E.D.

Lemma 4. The relaxed solution in proposition 1 is globally incentive compatible.

Proof of lemma 4 For global incentive compatibility we first show that no θ can

profitably misrepresent as θ̂ > θ. This is true if

π(θ)− π(θ̂)−X(θ̂)[c(q(θ̂), θ̂)− c(q(θ̂), θ)] ≥ 0.

Using (9), this can be rewritten as

∫ θ̂

θ

X(t)cθ(q(t), t)−X(θ̂)cθ(q(θ̂), t) dt ≥ 0.

This last inequality can be rewritten as

∫ θ̂

θ

∫ θ̂

t

Xθ(s)cθ(q(s), t) +X(s)cqθ(q(s), t)qθ(s) ds dt ≤ 0. (27)

The second term of the integrand is negative by the monotonicity of q(θ) in proposition

1. Note that we saw in the proof of proposition 1 that cθ(q(θ), θ) ≤ 0 for all types. As

t ≤ s and cθθ ≥ 0, clearly ct(q(s), t) ≤ 0 in the first term of the integrand. As Xθ ≥ 0

in proposition 1, inequality (27) has to hold.

To show that no θ gains by misrepresenting as θ̂ < θ we use the following notation
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introduced in equation (8):

π(θ̂, θ) = t(θ̂)−X(θ̂)c(q(θ̂), θ)

The idea is to define the following cost function

c̃(a, θ) = min{c(q(a), a), c(q(a), θ)} (28)

where q(a) is the optimal quality schedule derived in proposition 1. Next define

π̃(a, θ) = t(a)−X(a)c̃(a, θ). (29)

The following inequalities show that the solution derived above satisfies IC globally as

well:

π(θ̂, θ)− π(θ, θ)

≤ π̃(θ̂, θ)− π̃(θ, θ)

=

∫ θ̂

θ

∂π̃(a, θ)

∂a
da

=

∫ θ

θ̂

(
∂π(a, θ)

∂a

∣∣∣∣
θ=a

− ∂π̃(a, θ)

∂a

)
da (30)

=

∫ θ

θ̂

Xθ(a)(c̃(a, θ)− c(q(a), a)) +X(a)(c̃a(a, θ)− cq(q(a), a)qθ(a))da (31)

≤ 0

where the first inequality follows from the definition of c̃(·) and the observation that

π̃(θ, θ) = π(θ, θ). Equation (30) follows because ∂π(a,θ)
∂a

∣∣∣
θ=a

= 0 by the first order condi-

tion of truthful revelation. Equation (31) follows from the definitions of the derivatives

of π(a, θ) and π̃(a, θ) w.r.t. a. The final inequality follows from the properties of the
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optimal mechanism Xθ(a), qθ(a) ≥ 0 and the following three observations. First, by

definition of c̃(·) we have

c̃(a, θ)− c(q(a), a) ≤ 0

Second, for values of a where c̃(a, θ) = c(q(a), θ) we have

c̃a(a, θ)− cq(q(a), a)qa(a) = (cq(q(a), θ)− cq(q(a), a))qa(a) ≤ 0

because cqθ ≤ 0 and θ ≥ a. Finally for values where c̃(a, θ) = c(q(a), a) we have

c̃a(a, θ)− cq(q(a), a)qa(a) =
∂c(q(a), θ)

∂θ

∣∣∣∣
θ=a

≤ 0

because in our solution cθ(q(θ), θ) ≤ 0 for all θ. Q.E.D.

Proof of proposition 2 Type θw is determined by the intersection of qfb and k

which is unique by lemma 2. We have to show that θ1 < θw < θ2. Assumptions 1 (in

particular, MHR and the assumptions on third derivatives of c) and 2 imply that the

left hand sides of (15) and (16) are both increasing in θ if q(θ) = k(θ). Hence, θ1 and

θ2 are unique. As

Sq(k(θ))− cq(k(θ), θ)− F (θ)

f(θ)
cqθ(k(θ), θ) > Sq(k(θ))− cq(k(θ), θ) +

1− F (θ)

f(θ)
cqθ(k(θ), θ)

for all θ, it follows that θ1 < θ2. As Sq(k(θw))− cq(k(θw), θw) = 0, θw ∈ (θ1, θ2).

The optimal contract of proposition 2 for types above θw is similar to the optimal

contract in proposition 1. It is straightforward to check the optimality conditions of

theorem 1 as in the proof of proposition 1. Define λ(θ) = −F (θ) for types θ ≤ θ1

and let λ(θ) be defined by (14) with q(θ) = k(θ) for types θ ∈ (θ1, θw]. Note that

qfb(θ) < q(θ) = k(θ) < ql(θ) holds for types in (θ1, θw). Hence, λ(θ) ∈ (−F (θ), 0) for
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θ ∈ (θ1, θw). From there, all steps of the proof of proposition 1 showing the optimality

of q and λ go through. By (9), πi is decreasing on [θ, θ1), constant on (θ1, θ2) and

increasing on (θ2, θ̄] under the optimal q. Hence, (11) is binding for θ if and only if

θ ∈ [θ1, θ2]. Using (9) and θw ∈ [θ1, θ2], rents (for any given xi) under the optimal q can

be written as πi(θi) =
∫ θi
θw
−X i(θ̃)cθ(q(θ̃), θ̃) dθ̃.

To derive the optimal xi, we plug the optimal q and πi(θi) =
∫ θi
θw
−X i(θ̃)cθ(q(θ̃), θ̃) dθ̃

into the principal’s objective function. This leads to the maximization problem:

max
(xi)i=1...n

n∑
i=1

∫
Θ

{[
xi(Θ)

(
S(qi(θi))− c(qi(θi), θi)

)
+

∫ θi

θw

X i(θ̃)cθ(q(θ̃), θ̃) dθ̃

]}
f(θ1) . . . f(θn) dΘ

= max
(xi)i=1...n

n∑
i=1

∫
Θ−i

{∫ θw

θ

[
xi(Θ)

(
S(qi(θi))− c(qi(θi), θi)

)
−
∫ θw

θi
X i(θ̃)cθ(q(θ̃), θ̃) dθ̃

]
f(θi) dθi

+

∫ θ̄

θw

[
xi(Θ)

(
S(qi(θi))− c(qi(θi), θi)

)
+

∫ θi

θw

X i(θ̃)cθ(q(θ̃), θ̃) dθ̃

]
f(θi) dθi

}(∏
j 6=i

f(θj)

)
dΘ−i.

Using X i(θi) = EΘ−i x
i(Θ) and integration by parts to eliminate the inner integral, this

can be rewritten as

max
(xi)i=1...n

n∑
i=1

∫
Θ−i

{∫ θw

θ

xi(Θ)

[(
S(qi(θi))− c(qi(θi), θi)

)
− F (θi)

f(θi)
cθ(q(θ

i), θi)

]
f(θi) dθi

+

∫ θ̄

θw

[
xi(Θ)

(
S(qi(θi))− c(qi(θi), θi)

)
+

1− F (θi)

f(θi)
cθ(q(θ

i), θi)

]
f(θi) dθi

}(∏
j 6=i

f(θj)

)
dΘ−i.

Because cθ(q(θ
i), θi) = 0 for all θi ∈ [θ1, θ2] and as λ(θi) = −F (θi) for θi < θ1 and

λ(θi) = 1− F (θi) for θi > θ2, this is equivalent to

max
(xi)i=1...n

n∑
i=1

∫
Θ

{
xi(Θ)

[(
S(qi(θi))− c(qi(θi), θi)

)
+
λ(θi)

f(θi)
cθ(q(θ

i), θi)

]}
f(θ1) . . . f(θn) dΘ.

By the linearity of the objective in xi, it is therefore optimal to contract the firm with

the highest virtual valuation. Note that d V V/dθ ≤ 0 for θ < θw as λ(θ) < 0 and

48



cθ(q(θ), θ) ≥ 0 for these types (similar derivation as (26)).

Lemma 5 below shows that the solution of the relaxed program is also globally

incentive compatible. Q.E.D.

Lemma 5. The relaxed solution in proposition 2 is globally incentive compatible.

Proof of lemma 5 All θ ∈ [θ1, θ2] produce at k(θ) which is the quality level at

which a type has lower cost than any other type. As these types also have zero profits,

no other type can profitably misrepresent as θ ∈ [θ1, θ2]. For θ ≥ θw the menu is

equivalent to the one described in proposition 1. Therefore, lemma 4 implies non-local

IC on this part of the menu. The same proof as for lemma 4 with reversed signs implies

that the menu for θ < θw is non-locally IC.

What remains to be shown is that no type θ < θw can profitably misrepresent as

θ′ > θw (and the other way round). Take such a θ and observe that θ2 has lower costs

at q(θ′):

c(q(θ′), θ2)− c(q(θ′), θ) =

∫ θ2

θ

cθ(q(θ
′), t) dt < 0. (32)

The inequality follows from the fact that k(θ), k(θ2) < q(θ′) and cqθ < 0. Therefore, the

integrand is negative over the whole range. Incentive compatibility for θ requires

π(θ) ≥ π(θ′) +X(θ′)[c(q(θ′), θ′)− c(q(θ′), θ)]

= π(θ′) +X(θ′)[c(q(θ′), θ′)− c(q(θ′), θ2)]︸ ︷︷ ︸
≤0

+X(θ′)[c(q(θ′), θ2)− c(q(θ′), θ)].

The first term in the last expression is negative because incentive compatibility between

θ2 and θ′ is satisfied (see lemma 4 and recall that π(θ2) = 0). The second term is also

negative because of equation (32). As π(θ) ≥ 0, the inequality above and therefore

incentive compatibility holds.
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The proof for θ > θw and θ′ < θw works in the same way with θ1 in place of θ2.

Q.E.D.

Proof of corollary 1 Consider θ′ = θ. Define W = W fb(θ) = W sb(θ). As θ

produces his first best quality and first best welfare is decreasing at θ, there are types

θ > θ with lower welfare than W . By the definition of the (WNM)-case, W fb(θ̄) > W .

Taking these two points together and applying the intermediate value theorem yields

the existence of a type θ′′ such that W sb(θ′′) = W and W sb
θ (θ′′) > 0.

dW sb(θ)

dθ
= (Sq(q(θ))−cq(q(θ), θ))qθ(θ)−cθ(q(θ), θ) = −λ(θ)

f(θ)
cqθ(q(θ), θ)qθ(θ)−cθ(q(θ), θ)

where the first order condition for q is used for the second equality. We know from

proposition 2 and its proof that λ changes sign and cθ (weakly) changes sign at θw.

Consequently, W sb
θ (θ′′) > 0 implies λ(θ′′) > 0 and cθ(q(θ

′′), θ′′) ≤ 0.

The virtual valuation can be written as

V V (θ) = W sb(θ) +
λ(θ)

f(θ)
cθ(q(θ), θ)

and thus V V (θ) ≤ W sb(θ) since λ and cθ have opposite signs and the inequality is strict

if λ(θ), cθ(q(θ), θ) 6= 0.

If cθ(q(θ
′′), θ′′) < 0, it follows that V V (θ) > V V (θ′′). By continuity of W sb, there

exist types θ that yield strictly higher welfare than θ but still lose from θ in the pro-

curement.

Now consider the case where θ′′ ∈ (θ1, θ2) such that cθ(q(θ
′′), θ′′) = 0. In this case,

there are types slightly above θ that lose from types slightly below θ′′ although the

former yield higher (second best) welfare W sb. Q.E.D.

Proof of proposition 3 We will mainly utilize the following obvious result: If the
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scoring rule implements the optimal mechanism it has to hold that bid(θ′) = bid(θ′′)

whenever V V (θ′) = V V (θ′′) under the optimal mechanism.

We first focus on the second score auction. We showed in the main text that bidθ = 0

in the zero profit interval. Implicitly, this argument relied on the fact that the arg max

of (21) is also the quality provided by type θ if he wins the auction. To see this, note

that the firm maximizes p − c(q, θ) subject to s(q, p) = bid(2) when winning. If the

auction implements the optimal mechanism (in which q depends only on θ), the scoring

rule has to be such that the optimal q does not depend on the second highest bid. But

then this maximization is clearly solved by the same q as (21), i.e. the solution to both

problems satisfies the first order condition sq(q, p) = −sp(q, p)cq(q, θ).

Take θ1 and θ2 as defined in proposition 2.22 Because all θ ∈ (θ1, θ2) have q(θ) =

k(θ), it follows that bidθ(θ) = 0 for these types and therefore bid(θ1) = bid(θ2). As

virtual valuation and bids are continuous in type, this implies that V V (θ1) = V V (θ2)

has to hold if the scoring rule implements the optimal mechanism: Otherwise, types

slightly below θ1 and slightly above θ2 have the same bid but different virtual valuations.

Since q(θi) = k(θi), the virtual valuation for θi is S(k(θi)) − c(k(θi), θi) for i = 1, 2.

Consequently, the following equation has to hold if the scoring rule implements the

optimal mechanism: ∫ θ2

θ1

d{S(k(θ))− c(k(θ), θ)}
dθ

dθ = 0

This can be rewritten as

∫ θ2

θ1

(Sq(k(θ))− cq(k(θ), θ))cθθ(k(θ), θ)

−cqθ(k(θ), θ)
dθ = 0. (33)

22For the WM case, an analogous argument can be made with θ1 = θ and θ2 = θb as defined in
proposition 1.
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(33) uniquely pins down θ2 for a given θ1 if cθθ(k(θ2), θ2) 6= 0.23 For generic cost

functions satisfying our assumptions, cθθ(k(θ2), θ2) 6= 0 holds. Hence, generically (33)

pins down θ2 independent of the distribution of types. However, θ2 is defined by the

equation Sq(k(θ))−cq(k(θ), θ)+ 1−F (θ)
f(θ)cqθ(k(θ),θ)

= 0 which depends on f(θ2). Hence, slightly

perturbing f around θ2 changes θ2 but not (33). Consequently, a scoring rule auction

cannot implement the optimal mechanism for generic cost and distribution functions.

Second, we analyze the first score auction. To use the same reasoning as above,

we have to show the following: In a first score auction implementing the quality and

profit schedule of the optimal mechanism, types in the zero profit interval have the same

optimal bid. Put differently, we assume that there is a first score auction with score

s(q, p) which implements the quality and profit schedule of the optimal mechanism. We

then show that all types in a zero profit interval have the same optimal bid. Using

the arguments above, this shows that the first score auction does not implement the

optimal mechanism.

We denote the profits conditional on winning as π̃(θ), i.e.

π̃(θ) = maxp,qp− c(q, θ) s.t. : s(q, p) = bid(θ).

Clearly, the constraint will always be binding (otherwise a firm could get infinite profits).

Note that all types in a zero profit interval must have π̃(θ) = 0 which means that the

derivative of the Lagrangian

L(θ) = p− c(q, θ) + µ(θ) (s(q, p)− bid(θ))

23The reason is that the integrand is negative around θ1, positive around θ2 and changes sign only
at one type which is between θ1 and θ2. This follows from lemma 2.
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will equal 0. Using the envelope theorem, we get

Lθ(θ) = −cθ(q(θ), θ)− µ(θ)bidθ(θ) = 0.

Since all types in the zero profit interval have q(θ) = k(θ) in the optimal mechanism,

the term −cθ(q(θ), θ) is zero for those types. Since the constraint binds, the Lagrange

parameter µ(θ) is not zero. Therefore, bidθ(θ) has to be zero which is what we wanted

to show. Q.E.D.

Proof of proposition 4 For now, assume V V (θ1) ≥ V V (θ2) in the optimal mech-

anism. We will deal with the opposite case at the end of the proof. It was already

shown in the main text that it is optimal for each type to bid the quality that maxi-

mizes S(q)− c(q, θ) + ∆(q) and the costs the type has at this quality as minimum price.

The expression S(q) − c(q, θ) + ∆(q) is strictly concave in q and the function ∆ was

chosen such that the optimal quality schedule solves the first order condition of this

maximization problem. Hence, all types find it optimal to bid (q(θ), c(q(θ), θ)). By the

envelope theorem, bidθ(θ) = −G′()cθ(q(θ), θ) for θ ∈ [θ, θw] and bidθ(θ) = −cθ(q(θ), θ)

for θ > θw. This implies that bids are decreasing on [θ, θ2], constant on [θ1, θw] and on

(θw, θ2] and increasing on [θ2, θ̄].

The function G is chosen such that the following two properties are satisfied. First,

say there exists a type θ′ ≤ θ1 and a type θ′′ ≥ θ2 such that V V (θ′) = V V (θ′′) in the opti-

mal mechanism (proposition 2). ThenG is chosen such thatG (S(q(θ′))− c(q(θ′), θ′) + ∆(q(θ′))) =

S(q(θ′′)) − c(q(θ′′), θ′′) + ∆(q(θ′′)).24 As V Vθ(θ) is negative on [θ, θ1] and positive on

(θ2, θ̄], G is strictly increasing on the relevant range as required. Second, choose G such

that the scores of the optimal bids of types in (θw, θ2] according to score B equal the

24This will imply that the equilibrium bids of θ′ in scoring rule A and θ′′ in scoring rule B are equal.
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scores of types in [θ1, θw] according to score A. As shown above, types in (θw, θ2] have

the same bid and also types in [θ1, θw] have the same bid. Since, scores are decreasing

on [θ, θ1] and as V V (θ1) ≥ V V (θ2), this property is in line with G being increasing. In

fact, G will be discontinuously increasing at the bid of θ1 if V V (θ1) > V V (θ2).25

Since ties are broken using the virtual valuation of the optimal mechanism (see the

main text), the choice of G guarantees that the winner of the auction is indeed the firm

chosen under the optimal mechanism.

A firm’s expected rent is the same under the dual-score auction with tie breaking

and the optimal mechanism. To see this, note that types in [θ1, θ2] have zero profits

in the auction since all such types submit bids leading to the same score while types

outside this interval submit bids leading to higher scores. Consequently, a type in

[θ1, θ2] will get a price equal to the minimum price he bid – which was equal to his

costs – whenever he wins. Denote the distribution of second highest scores (score(2))

in the dual-score auction with tie breaking equilibrium by H and let p(score(2), q) be

the price a winning firm receives when bidding quality q while the second highest score

is score(2). Denoting the score associated with the optimal bid of type θ as score(θ),

expected profits for θ′ > θ2 in the dual-score auction with tie breaking can then be

written as

πds(θ′) =

∫ score(θ′)

score(θ2)

p(score(2), q(θ′))− c(q(θ′), θ′) dH(score(2)).

Since q(θ′) maximizes p(score(2), q)− c(q, θ′) and as p(score(θ′), q(θ′)) = c(q(θ′), θ′), we

25Note that a type θ1 + ε will still not want to imitate the much higher bid of a type θ1 − ε. While
this would increase his chance of winning a lot, he cannot deliver this higher score at non-negative
profits, i.e. bidding (q(θ1 + ε), c(q(θ1 + ε), θ1 + ε)) gives the highest score type θ1 + ε can deliver at
non-negative profits.
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get by an envelope argument

πdsθ (θ′) =

∫ score(θ′)

score(θ2)

−cθ(q(θ′), θ′) dH(score(2)) = −X(θ′)c(q(θ′), θ′).

The last equality holds as, for any type vector, the same firm as in the optimal mech-

anism wins in the dual-score auction with tie breaking. The last equation implies that

πθ is the same in the dual-score auction with tie breaking and the optimal mechanism.

A similar derivation holds for θ′ < θ1 and therefore rents are the same in the dual score

auction with tie-breaking and the optimal mechanism. Consequently, the principal’s

expected payoff is also the same which concludes the proof.

For the case that V V (θ1) < V V (θ2) in the optimal mechanism, we choose the scoring

rules s̃B(q, p) = G(sB(q, p)) and s̃A(q, p) = S(q) − p + ∆(q). The same derivation as

above goes then through analogously.26 Q.E.D.

26G will then be discontinuous at the equilibrium bid of θ2 instead of the bid of θ1.
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Figure 1: Average costs (AC, solid line) and marginal costs (MC, dashed line) as a
function of q for two different firms.
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Figure 2: c(q, θ) in example 2 both as a function of q (for 3 values of θ) and as a function
of θ (for 3 values of q).
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Figure 3: Optimal q(θ) (solid, red) in the WNM case, together with (dashed)
ql(θ), qfb(θ), k(θ), qh(θ).
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